Skip to main content Accessibility help

Barium Strontium Titanate Thin Film Capacitors for Low Inductance Decoupling Applications

  • J. D. Baniecki (a1), T. Shioga (a1) and K. Kurihara (a1)


Sputter deposited barium strontium titanate (BST) based thin film capacitors have been developed for use in GHz LSI decoupling applications. The fabricated 1.60×1.85 mm2 BST chip decoupling capacitors with Pt electrodes and 150 μm bump pitch, have a capacitance density of 1.2 μF/cm2, low equivalent series inductance of 15 pH, and a low equivalent series resistance of 0.02 Ω. The impedance of the chip capacitors at 1 GHz is over 1000 times lower than conventional multilayered ceramic capacitors. Fundamental electrical and reliability properties of Pt/BST/Pt thin film capacitor structures were also investigated. Capacitors with 200 nm thick BST thin films deposited at 500 °C by RF magnetron sputtering achieved a C/A of 1.8 μF/cm2, leakage current density < 10-9 A/cm2 at 2 volts, and a breakdown field > 2.5 MV/cm at 20 °C. A fit of the failure data to a Weibull distribution indicated at least two different physical mechanisms causing capacitor failure. The primary failure mechanism for 1.5 volt operation was due to resistance degradation without catastrophic capacitor failure. At higher applied voltages, catastrophic capacitor failure occurred with the breakdown event characterized by a thermal runway process. The physical mechanisms contributing to capacitor failure are interpreted to be due to ionic migration and charge injection, and the contribution of these mechanisms to the degradation process could be partially resolved by bi-polar voltage pulse stressing. The projected mean time to failure for 1.5 volt operation is extrapolated to be in excess of 104 years at 75 °C and 126 years at 125 °C. The results indicate that sputter deposited BST thin film capacitors are promising for future GHz LSI decoupling applications.



Hide All
[1] Chun, S., Swaminathan, M., Smith, L. D., Srinivasan, J., Jin, Z., Iyer, M. K., 50th Electronic Components and Technology Conference, pp.760768, 2000.
[2] Takken, T. and Tuckerman, D., Proc IEEEE Multi-Chip Module Conference, pp.79 – 84, 1993.
[3] Bhattacharya, S., Tummala, R., Journal of Materials Science, Materials in Electronics, 11, 253268 (2000).
[4] Imanaka, Y., Shioga, T., and Baniecki, J.D., Fujistu Sci. Tech. J., 38, 22 (2002)
[5] Fukumaru, F., Nagkari, S., Konushi, S., Nishikawa, H., Kamigaki, K., Nambu, S., Mat. Res. Soc. Symp. Proc. Vol. 541, 573 (1999)
[6] Kotecki, D.E., Baniecki, J.D., Shen, H., Laibowitz, R.B., Saenger, K.L., Lian, J.J., Shaw, T.M., Athavale, S.D., Cabral, C. Jr, Duncombe, P.R., Gutsche, M., Kunkel, G., Park, Y.J., Wang, Y., and Wise, R., IBM J. Res. Develop. 43, 367 (1999)
[7] Baniecki, J.D., Cross, J.S., and Tsukada, M., Appl. Phys. Lett., 81, 3837 (2002)
[8] Hwang, C.S., Lee, B. T., Kang, C. S., Kim, J. W., Lee, K. H., Cho, H. J., Horii, H., Kim, W. D., Lee, S. I., Roh, Y. B., and Lee, M. Y., J. Appl. Phys. 83, 3703 (1998)
[9] Bethe, H.A., MIT Radiat. Lab. Rep., 43 (1942)
[10] Simmons, J.G., Phys. Rev. Lett. 15, 967 (1965)
[11] Zafar, S., Jones, R.E., Jiang, B., White, B., Kaushik, V., and Gillespie, S., Appl. Phys. Lett. 73, 3533 (1998)
[12] Dietz, G.W., Schumacher, M., Waser, R., Streiffer, S.K., Basceri, C., and Kingon, A. I., J. Appl. Phys. 82, 2359 (1997)
[13] Baniecki, J. D., Laibowitz, R. B., Shaw, T. M., Parks, C., Lian, J., Xu, H., Ma, Q. Y., J. Appl. Phys. vol. 89, pp. 28732885, (2001)
[14] Schroeder, H. and Schmitz, S., presented at the Fall MRS meeting, Boston, Ma (2002)
[15] Schultz, W., Z. Physik 138, 598 (1954)
[16] Crowell, C.R. and Sze, S.M., Solid-State Electronics 9, 1035 (1966)
[17] Scott, J.F., Ferroelectric Memories, Springer-Verlag, pp 98104 (2000)
[18] Choi, G.M., Tuller, H.L., and Goldschmidt, D., Phys. Rev. B 34, 6972 (1986)
[19] Sze, S.M., “Physics of Semiconductor Devices”, John Wiley and Sons, 246311 (1981)
[20] Rhoderick, E.H., Metal-semiconductor contacts, Clarendon Press, Oxford, 2546, (1978)
[21] Rideout, V.L., Thin Solid Films, 48, 261 (1978)
[22] Wagner, C., Phys. Z., 32, 641 (1931)
[23] Schottky, W., Phys. Z., 32, 833 (1931)
[24] Rhoderick, E.H., Metal-semiconductor contacts, Clarendon Press, Oxford, 81, (1978)
[25] Gossick, B.R., Solid State Electronics, 6, 445 (1963)
[26] Baniecki, J.D., Shioga, T., Kurihara, K., to be published
[27] Numata, K., Fukuda, Y., Aoki, K., and Nishimura, A., Jap. J. Appl. Phys., 34, 5425 (1995)
[28] Basceri, C., Wells, M.A., Streiffer, S.K., Kingon, A. I., Bilodeau, S., Carl, R., and van Buskirk, P.C., Summerfelt, S.R., and McIntyre, P., “Resistance Degradation of CVD (Ba,Sr)TiO3 Thin Films for DRAMs and Integrated Decoupling Capacitors”, ISAF Symposium Proceedings, pp 5154, (1996)
[29] Horikawa, T., Kawahara, T., Yamamuka, M. and Ono, K., IEEE International Reliability Physics Symposium Proceedings, 35th annual, pp 8289 (1997)
[30] Zafar, S., Hradsky, B., Gentile, D., Chu, P., Jones, R.E., and Gillespie, S., J. Appl. Phys, 86, 3890 (1999)
[31] Saha, S. and Krupanidhi, S.B., J. Appl. Phys, 87, 3056 (2000)
[32] Scott, J.F., Azuma, M., Paz de Araujo, C.A., McMillan, L.D., Scott, M.C., and Roberts, T., Int. Ferro. Vol 4, 61 (1994)
[33] Noma, A. and Ueda, D., Int. Ferro. Vol. 15, 69 (1997)
[34] Waser, R., J. Am. Ceram. Soc. 74, 1934 (1991)
[35] Harari, E., J. Appl. Phys. 49, 2478 (1978)

Barium Strontium Titanate Thin Film Capacitors for Low Inductance Decoupling Applications

  • J. D. Baniecki (a1), T. Shioga (a1) and K. Kurihara (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed