Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-19T11:29:45.177Z Has data issue: false hasContentIssue false

Band-GaP Energy and Physical Properties of InN Grown by RF-Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Yasushi Nanishi
Affiliation:
Dept. of Photonics, Ritsumeikan Univ., 1–1–1 Noji-Higashi, Kusatsu, Shiga 525–8577, Japan
Yoshiki Saito
Affiliation:
Dept. of Photonics, Ritsumeikan Univ., 1–1–1 Noji-Higashi, Kusatsu, Shiga 525–8577, Japan
Tomohiro Yamaguchi
Affiliation:
Dept. of Photonics, Ritsumeikan Univ., 1–1–1 Noji-Higashi, Kusatsu, Shiga 525–8577, Japan
Fumie Matsuda
Affiliation:
Dept. of Photonics, Ritsumeikan Univ., 1–1–1 Noji-Higashi, Kusatsu, Shiga 525–8577, Japan
Tsutomu Araki
Affiliation:
Dept. of Photonics, Ritsumeikan Univ., 1–1–1 Noji-Higashi, Kusatsu, Shiga 525–8577, Japan
Hiroyuki Naoi
Affiliation:
Center for Promotion of The COE Program, Ritsumeikan Univ., 1–1–1 Noji-Higashi, Kusatsu, Shiga 525–8577, Japan
Akira Suzuki
Affiliation:
Res. Org. of Sci. & Eng., Ritsumeikan Univ., 1–1–1 Noji-Higashi, Kusatsu, Shiga 525–8577, Japan
Hiroshi Harima
Affiliation:
Dept. of Electronics and Information Science, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606–8585, Japan
Takao Miyajima
Affiliation:
Core Technology Development Center, Core Technology & Network Company, Sony Corporation, 4–14–1 Asahi-cho, Atsugi, Kanagawa 243–0014, Japan
Get access

Abstract

This paper describes studies on high-quality InN growth on sapphire by RF-MBE. Critical procedures to obtain high-quality InN films were investigated and (1) nitridation process of sapphire substrates prior to growth, (2) precise control of V/III ratio and (3) selection of optimum growth temperature were found to be essential. Detailed structural characterizations by XRD, TEM, Raman scattering and EXAFS indicate that InN films obtained in this study have ideal hexagonal wurtzite structure. FWHMs of ω-2Θ mode XRD and E2(high)-phonon-mode of Raman scattering are as small as 28.9 arcsec and 3.2 cm-1, respectively. True band gap energy of InN is also discussed based on optical characterization results obtained from well-characterized hexagonal InN grown in this study. PbS, instead of InGaAs, was used as a detector for PL study in order to solve the problem coming from the cut-off wavelength of InGaAs detector. Based on these systematic studies on structural and optical property characterizations using high-quality InN, true band-gap energy of InN is suggested to be less than 0.67 eV and approximately 0.65 eV at room temperature. Single-crystalline InN films are also successfully grown on Si substrates by a brief nitridation of the Si substrates. Significant improvement of InN crystal quality on Si substrates by the insertion of an AlN buffer layer is also demonstrated.

Type
articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saito, Y., Teraguchi, N., Suzuki, A., Araki, T. and Nanishi, Y., Jpn. J. Appl. Phys. 40, L91(2001).Google Scholar
2. Higashiwaki, M. and Matsui, T., Jpn. J. Appl. Phys. 41, L540 (2002).Google Scholar
3. Lu, H., Schaff, W. J., Hwang, J., Wu, H., Koley, G., and Eastman, L. F., Appl. Phys. Lett. 79, 1489 (2001).Google Scholar
4. Lu, H., Schaff, W. J., Eastmanl, L. F., Wu, J., Walukiewicz, W., Look, D. C. and Molnar, R. J., Mat. Res. Soc. Symp. Proc. 743, L4.10 (2003).Google Scholar
5. Osamura, K., Nakajima, K. and Murakami, Y., Solid State Commun. 11, 617 (1972).Google Scholar
6. Tansley, T. L. and Foley, C. P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
7. Davydov, V. Y., Klochikhin, A. A., Seisyan, R. P., Emtsev, V. V., Ivanov, S. V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A. V., Adrhold, J., Semchinova, O. and Graul, J., phys. stat. sol. (b) 229, R1 (2002).Google Scholar
8. Wu, J., Walukiewicz, W., Yu, K. M., Arger, J. W. III, Haller, E. E., Lu, H., Schaff, W. J., Saito, Y. and Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).Google Scholar
9. Matsuoka, T., Okamoto, H., Nakao, M., Harima, H. and Kurimoto, E., Appl. Phys. Lett. 81, 1246 (2002).Google Scholar
10. Saito, Y., Harima, H., Kurimoto, E., Yamaguchi, T., Teraguchi, N., Suzuki, A., Araki, T., and Nanishi, Y., phys. stat. sol. (b) 234, 796 (2002).Google Scholar
11. Saito, Y., Teraguchi, N., Suzuki, A., Araki, T., and Nanishi, Y., IPAP conf. Series. 1, 182 (2000).Google Scholar
12. Yamaguchi, T., Saito, Y., Kano, K., Araki, T., Teraguchi, N., Suzuki, A., and Nanishi, Y., Proceedings of Int. Conf. on Indium Phosphide and Related Materials PII-41, 643 (2002).Google Scholar
13. Saito, Y., Teraguchi, N., Suzuki, A., Yamaguchi, T., Araki, T., and Nanishi, Y., Mat. Res. Symp. Proc. 639, G11.18 (2001).Google Scholar
14. Araki, T., Ueta, S., Mizuo, K., Yamaguchi, T., Saito, Y. and Nanishi, Y., phys. stat. sol. (c) 0, 2798 (2003).Google Scholar
15. Miyajima, T., Kudo, Y., Liu, K. L., Uruga, T., Honma, T., Saito, Y., Hori, M., Nanishi, Y., Kobayashi, T. and Hirata, S., phys. stat. sol. (b) 234, 801 (2002).Google Scholar
16. Nanishi, Y., Saito, Y. and Yamaguchi, T., Jpn. J. Appl. Phys. 42, 2549 (2003).Google Scholar
17. Yamamoto, A., Tsujino, M., Ohkubo, M. and Hashimoto, A., J. Cryst. Growth 137, 415 (1994).Google Scholar
18. Yamaguchi, T., Mizuo, K., Saito, Y., Araki, T., Nanishi, Y. and Miyajima, T., Inst. Phys. Conf. Ser. 174, 17 (2003).Google Scholar
19. Yamaguchi, T., Mizuo, K., Saito, Y., Noguchi, T., Araki, T., Nanishi, Y., Miyajima, T. and Kudo, Y., Mat. Res. Soc. Symp. Proc. 743, L3.26 (2003).Google Scholar
20. Yamaguchi, T., Saito, Y., Morioka, C., Yorozu, K., Araki, T., Suzuki, A. and Nanishi, Y., phys. stat. sol. (b) 240, 429 (2003).Google Scholar
21. Yamaguchi, T., Saito, Y., Araki, T., Suzuki, A. and Nanishi, Y., Extended Abstract of 2003 IMFEDK, Osaka, Japan, 16–18 Jul., P4 (2003).Google Scholar