Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T08:42:25.447Z Has data issue: false hasContentIssue false

Band Engineering of Partially Exposed Carbon Nanotube Field-Effect Transistors

Published online by Cambridge University Press:  01 February 2011

Xiaolei Liu
Affiliation:
Dept. of E.E.-Electrophysics, University of Southern California, Los Angeles, CA 90089
Zhicheng Luo
Affiliation:
Dept. of E.E.-Electrophysics, University of Southern California, Los Angeles, CA 90089
Song Han
Affiliation:
Dept. of E.E.-Electrophysics, University of Southern California, Los Angeles, CA 90089
Tao Tang
Affiliation:
Dept. of E.E.-Electrophysics, University of Southern California, Los Angeles, CA 90089
Daihua Zhang
Affiliation:
Dept. of E.E.-Electrophysics, University of Southern California, Los Angeles, CA 90089
Chongwu Zhou
Affiliation:
Dept. of E.E.-Electrophysics, University of Southern California, Los Angeles, CA 90089
Get access

Abstract

We present a new approach to engineer the band structure of carbon nanotube field-effect transistors via selected area chemical gating. By exposing the center part or the contacts of the nanotube devices to oxidizing or reducing gases, a good control over the threshold voltage and subthreshold swing has been achieved. Our experiments reveal that NO2 shifts the threshold voltage higher while NH3 shifts it lower for both center-exposed and contact-exposed devices. However, modulations to the subthreshold swing are in opposite directions for center-exposed and contact-exposed devices: NO2 lowers the subthreshold swing of the contact-exposed devices, but increases that of the center-exposed devices; In contrast, NH3 reduces the subthreshold swing of the center-exposed devices, but increases that of the contact-exposed devices. A model has been developed based on Langmuir isotherm, and the experimental results can be well explained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature(London) 393, 49 (1998).Google Scholar
[2] Appenzeller, J., Knoch, J., Derycke, V., Martel, R., Wind, S., and Avouris, Ph., Phys. Rev. Lett. 89, 126801 (2002).Google Scholar
[3] Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., and Dai, H., Nat. Mater. 1, 241 (2002).Google Scholar
[4] Rosenblatt, S., Yaish, Y., Park, J., Gore, J., Sazonova, V., and McEuen, P. L., Nano Lett. 2, 869 (2002).Google Scholar
[5] Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H. J., Nature (London) 424, 654 (2003).Google Scholar
[6] Lu, C., Fu, Q., Huang, S., and Liu, J., Nano Lett. 4, 623 (2004).Google Scholar
[7] Huang, S., Woodson, M., Smalley, R., Siddons, G. P., Merchin, D., Back, J. H., Jeong, J. K., and Shim, M., Nano Lett. 4, 927 (2004).Google Scholar
[8] Wind, S. J., Appenzeller, J., and Avouris, Ph., Phys. Rev. Lett. 91, 58301 (2003).Google Scholar
[9] Collins, P. G., Bradley, K., Ishigami, M., and Zettle, A., Science 287, 1801 (2000).Google Scholar
[10] Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., and Dai, H., Science 287, 622 (2000).Google Scholar
[11] Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y. M., Kim, W., Utz, P. J., and Dai, H. J., P. Natl. Acad. Sci. USA 100, 4984 (2003).Google Scholar
[12] Star, A., Gabriel, J. C. P., Bradley, K., and Gruner, G., Nano Lett. 3, 459 (2003).Google Scholar
[13] Bradley, K., Gabriel, J. C. P., Briman, M., Star, A., and Gruner, G., Phys. Rev. Lett. 91, 218301 (2003).Google Scholar
[14] Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A., and Smalley, R. E., Nature (London) 388, 255 (1997).Google Scholar
[15] Kong, J., Zhou, C. W., Yenilmez, E., and Dai, H. J., Appl. Phys. Lett. 77, 3977 (2000).Google Scholar
[16] Zhou, C. W., Kong, J., Yenilmez, E., and Dai, H. J., Science 290, 1552 (2000).Google Scholar
[17] Kong, J., Cao, J., Dai, H. J., and Anderson, E., Appl. Phys. Lett. 80, 73 (2002).Google Scholar
[18] Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., and Dai, H. J., Nature (London) 395, 878 (1998).Google Scholar
[19] The cross-section of the NO2 and NH3 is roughly 10-19 m2. And for a nanotube 1 μm long, 2nm in diameter, the total area is 6×10-15 m2. Thus, the maximum number of adsorption sites can be estimated as the total area of the nanotube side wall divided by the cross-sectional area of the adsorbed molecule.Google Scholar
[20] Chang, H., Lee, J., Lee, S., and Lee, Y., Appl. Phys. Lett. 79, 3863 (2001).Google Scholar
[21] Zhao, J. J., Buldum, A., Han, J., and Lu, J. P., Nanotechnology 13, 195 (2002).Google Scholar
[22] Qi, P., Vermesh, O., Grecu, M., Javey, A., Wang, Q., Dai, H., Peng, S., and Cho, K. J., Nano Lett. 3, 347 (2003).Google Scholar
[23] Sze, S. M., Physics of Semiconductor Devices 2nd Edition (John Wiley & Sons, 1981)Google Scholar