Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T04:44:33.898Z Has data issue: false hasContentIssue false

Ballistic and diffusive random walks in confinement

Published online by Cambridge University Press:  26 February 2011

Pierre Levitz
Affiliation:
levitz@pmc.polytechnique.fr, CNRS-ECOLE POLYTECHNIQUE, Route de Saclay, Palaiseau, Essonne, 91128, France
D. Grebenkov
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR 7643 du CNRSEcole Polytechnique, 91128 Palaiseau, France. levitz@pmc.polytechnique.fr
D. Petit
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR 7643 du CNRSEcole Polytechnique, 91128 Palaiseau, France. levitz@pmc.polytechnique.fr
C. Vigouroux
Affiliation:
Laboratoire de Physique de la Matière Condensée, UMR 7643 du CNRSEcole Polytechnique, 91128 Palaiseau, France. levitz@pmc.polytechnique.fr
Get access

Abstract

Porous materials, concentrated colloidal suspensions are example of confining systems developing large specific surface and presenting a rich variety of shapes. Such an interfacial confinement strongly influences the molecular dynamics of embedded fluids and the diffusive motion of entrapped Brownian particles. An individual trajectory near the interface can be described as an alternate succession of adsorption steps and random flights in the bulk. Statistical properties of these random flights in various interfacial confining systems are determinant to understand the full transport process. Related to first passage processes, these properties play a central role in numerous problems such as the mean first exit time in a bounded domain, heterogeneous catalytic reactivity and nuclear magnetic relaxation in complex and biological fluids. In the present work, we first consider the various possibilities to connect two points of a smooth interface by a random flight in the bulk. Second, we analyze at the theoretical and experimental points of view a way to probe Brownian flights statistics. Implications concerning diffusive transport in disordered porous materials are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blanco, S. and Fournier, R., Europhys. Lett. 61, 168 (2003)Google Scholar
2. Mazollo, A. 2004 Europhys.Lett. 68 350 (2004)Google Scholar
3. Benichou, O., Coppey, M., Moreau, M., Suet, P.H. and Voituriez, R., Europhys.Lett. 70, 42 (2005)Google Scholar
4. Levitz, P. and J-P Korb Europhys. Lett. 70 672 (2005)Google Scholar
5. Levitz, P. J. Phys.:Condens. Matter 17, 4059 (2005)Google Scholar
6. Levitz, P., Grebenkov, D., Kolvankar, K. and B.Sapoval, Submitted to Phys.Rev.Lett.(2005)Google Scholar
7. Levitz, P. and Tchoubar, D., J. Phys. I, 2, 771,(1992)Google Scholar
8. Levitz, P. Europhysics, P. Letters 39: 593–598 (1997)Google Scholar
9. Feller, W., An Introduction to Probability Theory and its Applications, John Wiley and Sons, New York (1968)Google Scholar
10. Bychuk, O. V. and O'Shaughnessy, B.. Phys. Rev. Lett. 74, 1795–98.(1995)Google Scholar
11. Pothuaud, L., Porion, P., Lespessailles, E., Benhamou, C, Levitz., P. J.of Microscopy, 199,149, (2000).Google Scholar
12. Maritan, A.., Stella, A.L. and Toigo, F., Phys. Rev. B. 40 9269 (1989)Google Scholar