Skip to main content Accessibility help
×
Home

Bacterial Adhesion on Polyelectrolyte Modified Microstructured Titanium Surfaces

  • Argelia Almaguer-Flores (a1), Yolloxóchilt R. Sánchez-Cruz (a1), Jung Hwa Park (a2), René Olivares-Navarrete (a2), Michel Dard (a3), Rinna Tannenbaum (a2), Zvi Schwartz (a2) and Barbara D. Boyan (a2)...

Abstract

Micron-scale and submicron-scale surface roughness enhance osteoblast differentiation on titanium (Ti) substrates and increases bone-to-implant contact in vivo. However, bacterial adhesion is also strongly influenced by roughness and surface chemistry. The aim of this study was to investigate if chemical surface modifications alter initial bacterial attachment. To achieve this, two polyelectrolyte layers [chitosan (Ch) and poly(L-lysine) (PLL)] were used to coat Ti surfaces with different roughness (PT [Ra<0.3μm], SLA [Ra≥3.0μm]). Bacterial attachment was evaluated using Aggregatibacter actinomycetemcomitans, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia and Streptococcus sanguinis. After 24h incubation, bacteria were detached from the samples with sonication and the counting plate technique was performed to determine the number of colony forming units (CFU's). Additionally, surfaces were observed by scanning electron microscopy to determine bacteria surface coverage. Statistical significance was determined using ANOVA followed by Bonferroni's modification of Student's t-test. The results showed that polyelectrolyte coatings did not affect surface roughness. Modified surfaces were more hydrophilic than the controls. PT surfaces covered by Chi exhibited lower CFUs than the same surface covered by PLL or the control PT (140 × 105/mL, 343 × 105/mL and 283 × 105/mL, respectively). The opposite effect was observed on the SLA surfaces, PLL coated samples shown lower CFUʼs than Chi or uncoated SLA (199 × 105/mL, 229 × 105/mL and 227 × 105/mL, respectively). The Chi layer appeared to reduce bacterial adhesion only on the smooth surfaces. In contrast, PLL coatings reduced bacterial attachment on rougher surfaces. These results suggest that chemical modification of Ti without alteration of surface roughness affects oral bacterial attachment, and could be useful to prevent peri-implantitis related diseases.

Copyright

References

Hide All
1. Quirynen, M., De Soete, M. and van Steenberghe, D., Clin Oral Implants Res 13 (1), 119 (2002).
2. Apse, P., Ellen, R. P., Overall, C. M. and Zarb, G. A., J Periodontal Res 24 (2), 96105 (1989).
3. Quirynen, M. and Listgarten, M. A., Clin Oral Implants Res 1 (1), 812 (1990).
4. Costerton, J. W., Stewart, P. S. and Greenberg, E. P., Science 284 (5418), 13181322 (1999).
5. Cordero, J., Munuera, L. and Folgueira, M. D., Injury 27 Suppl 3, SC3437 (1996).
6. Strevett, K. A. and Chen, G., Res Microbiol 154 (5), 329335 (2003).
7. Scheuerman, T. R., Camper, A. K. and Hamilton, M. A., J Colloid Interface Sci 208 (1), 2333 (1998).
8. Barbour, M. E., O'Sullivan, D. J., Jenkinson, H. F. and Jagger, D. C., J Mater Sci Mater Med 18 (7), 14391447 (2007).
9. Almaguer-Flores, A., Olivares-Navarrete, R., Lechuga-Bernal, A., Ximenez-Fyvie, L. A. and Rodil, S. E., Diamond and Related Materials 18 (9), 11791185 (2009).
10. Almaguer-Flores, A., Olivares-Navarrete, R., Ximénez-Fyvie, L. A., García-Zarco, O. and Rodil, S. E., presented at the Mater. Res. Soc. Symp. Proc., 2009 (unpublished).
11. Almaguer-Flores, A., Ximenez-Fyvie, L. A. and Rodil, S. E., J Biomed Mater Res B Appl Biomater (2009).
12. Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G. and Varaldo, P. E., Antimicrobial Agents and Chemotherapy 34 (10), 20192023 (1990).
13. Tsai, G. J. and Su, W. H., J Food Prot 62 (3), 239243 (1999).
14. Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J. and Roller, S., International Journal of Food Microbiology 71 (2–3), 235244 (2001).
15. Sarasam, A. R., Brown, P., Khajotia, S. S., Dmytryk, J. J. and Madihally, S. V., J Mater Sci Mater Med 19 (3), 10831090 (2008).
16. Chua, P. H., Neoh, K. G., Kang, E. T. and Wang, W., Biomaterials 29 (10), 14121421 (2008).
17. Harnet, J. C., Guen, E. Le, Ball, V., Tenenbaum, H., Ogier, J., Haikel, Y. and Vodouhe, C., J Mater Sci Mater Med 20 (1), 185193 (2009).
18. Jacobson, B. S. and Branton, D., Science 195 (4275), 302304 (1977).
19. Krikorian, V., Kurian, M., Galvin, M. E., Nowak, A. P., Deming, T. J. and Pochan, D. J., Journal of Polymer Science Part B-Polymer Physics 40 (22), 25792586 (2002).
20. van Dijk, J., Herkstroter, F., Busscher, H., Weerkamp, A., Jansen, H. and Arends, J., J Clin Periodontol 14 (5), 300304 (1987).
21. Quirynen, M. and Bollen, C. M., J Clin Periodontol 22 (1), 114 (1995).

Keywords

Bacterial Adhesion on Polyelectrolyte Modified Microstructured Titanium Surfaces

  • Argelia Almaguer-Flores (a1), Yolloxóchilt R. Sánchez-Cruz (a1), Jung Hwa Park (a2), René Olivares-Navarrete (a2), Michel Dard (a3), Rinna Tannenbaum (a2), Zvi Schwartz (a2) and Barbara D. Boyan (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed