Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T06:49:31.398Z Has data issue: false hasContentIssue false

Back Channel Degradation and Device Material Improvement by Ge Implantation

Published online by Cambridge University Press:  21 February 2011

F. Namavar
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
B. Buchanan
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
E. Cortesi
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
P. Sioshansi
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
Get access

Abstract

Because of potential “back channel” leakage problems in silicon-oninsulator (SOI) metal-oxide-semiconductor (MOS) devices, especially n-channel MOS devices which must operate in an ionizing radiation environment, it is desirable to produce Separation by IMplantation of OXygen (SIMOX) wafers which have a layer of poor quality silicon near the Si/buried SiO2 interface. At the same time, these wafers must have low defect, high quality silicon near the wafer surface for device fabrication.

We have demonstrated that with Ge ion implantation and solid phase epitaxy regrowth, the surface region of the silicon top layer of the SIMOX wafer is improved and the region adjacent to the buried SiO2 is degraded. These results have been observed by RBS/channeling, XTEM, and plane view TEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsaur, B.Y., Mat. Res. Soc. Symp. Proc. 35, 641 (1985).Google Scholar
2. Celler, G.K., Hemment, P.L.F., West, K.W., and Gibson, J.M., Appl. Phys. Lett. 48, 532 (1986).Google Scholar
3. Mao, B.Y., Chang, P.H., Lam, H.W., Shen, B.W., and Keenan, J.A., Appl. Phys. Lett. 48, 794 (1986).Google Scholar
4. Hill, D., Fraundorf, P., and Fraundorf, G., J. Appl. Phys. 63, 4932 (1988).Google Scholar
5. Cheek, T.F. Jr., and Chen, D., Mat. Res. Soc. Symp. Proc. 107, 53 (1988).Google Scholar
6. Margail, J., Stoemenos, J., Jaussaud, C., Bruel, M., Appl. Phys. Lett. 54, 526 (1989).Google Scholar
7. Namavar, F., Cortesi, E., and Sioshansi, P., in Selected Topics in Electronic Materials, edited by Appleton, B.R. et al., (Mat. Res. Soc. Extended Abstracts, Pittsburgh, PA, 1988), 109.Google Scholar
8. Namavar, F., Cortesi, E., and Sioshansi, P., Symposium A, Fall 1988 Mat. Res. Soc. Meeting, accepted for publication.Google Scholar
9. Jones, K.S., Prussin, S., and Weber, E.R., Appl. Phys. A 45, 1 (1988).Google Scholar
10. Buchanan, B.L., Neamen, D.A., and Shedd, W.M., IEEE Trans. Electron Devices ED–25, 959 (1978).Google Scholar
11. Buchanan, B.L., in VLSI Handbook, edited by Einspruch, N.G. (Academic Press, Inc., Orlando, FL, 1985), 571.Google Scholar
12. Srour, J.R., Curtis, O.L. Jr., and Chiu, K.Y., IEEE Trans. Nucl. Sci. NS– 21, 73 (1974).Google Scholar
13. Hughes, R.C., EerNisse, E.P., and Stein, H.J., IEEE Trans. Nucl. Sci. NS–22, 2227 (1975).Google Scholar
14. Lau, S.S., Matteson, S., Mayer, J.W., Revez, P., Gyulai, J., Roth, J., Sigmon, T.W., and Cass, T., Appl. Phys. Lett. 34, 76 (1979).Google Scholar
15. Ham, W.E., Abrahams, M.S., Buiocchi, C.J., and Blanc, J., J. Electrochem. Soc. 124, 634 (1977).Google Scholar
16. Beneking, H., Narozny, P., Emeis, N., and Goetz, K.H., J. Electronic Materials 15, 247 (1986).Google Scholar