Skip to main content Accessibility help
×
Home

Automotive Applications of Sol-Gel Processed Materials: Novel, Low Power Consumption, Electrically Heatable Catalyst Devices

  • S. R. Nakouzi (a1), J. R. McBride (a2), K. E. Nietering (a2), J. H. Visser (a2), A. A. Adamczyk (a3) and C. K. Narula (a1)...

Abstract

Exhaust gas heat is the primary source of warming in a conventional automotive exhaust catalyst. It typically becomes operational within minutes after the initial start-up of an engine, when it attains temperatures greater than approximately 350°C. However, around 70% of the total hydrocarbon and carbon monoxide (CO) emissions of a modern gasoline powered vehicle, under a normal driving cycle, are released during this period of cold-start. One of the strategies suggested to treat the pollutants during the first minute after initial start-up involves electrically heating the catalyst. However, devices developed for this purpose are power intensive, can require a second battery and can reduce fuel economy. The increased weight, in turn, results in increased pollution. Here we describe a low power consumption prototype which contains a conducting layer beneath the washcoat. The prototype [4 cm2] was tested at a gas flow rate of 100 seem and required less than 5 Watts to attain temperatures greater than 350°C in less than 10 seconds. The prototype was tested in a flow reactor and found to rapidly heat up to light-off temperatures where the conversion of the hydrocarbons and CO takes place. We also summarize progress made in our laboratory in the fabrication of a test device employing sol-gel processed metal oxide films.

Copyright

References

Hide All
1. Heck, R.M., Farrauto, R.J., Catalytic Air Pollution Control: Commercial Technologies; Van Nostrana Reinhold: New York, 1995.
2. Narula, C.K., Allison, J.E., Bauer, D., Gandhi, H.S., Chem. Mater., 1996, 8, 984.
3. Whittenberger, W.A.; Kubsh, J.E.; SAE 910613, 1991.
Hurley, R.G.; Hansen, L.A.; LaCourse, D.L.; Watkins, W.L.H.; Gandhi, H.S.; Whittenberger, W.A.; SAE 900504, 1990.
Heimrich, M.J.; Albu, S.; Osborne, J.; SAE 902115, 1990.
4. Hurley, R.G.; Guttridge, D.L.; Hansen, L.A.; Pawlowicz, R.J.; Smolinski, J.M.; Gandhi, H.S.; SAE 912384, 1991.
5. Mizuno, H.; Abe, F.; Hashimoto, S.; Kondo, T.; SAE 940466, 1994.
6. Häfele, E.; Säger, M.; WO 92/17692, 1992.
7. Burggraaf, A.J.; Keizer, K.; van Hassel, B.A.; Solid State Ionics, 1989, 32/33, 771.
8. LaCourse, W.C.; Kim, S.; Science of Ceramic Processing, eds. Hench, L.L.; Ulrich, D.R., Wiley, New York, 1986.
9. Narula, C.K.; Visser, J.H.; Adamczyk, A.A.; US 5,536,857, 1996.
10. Arfsten, N.J.; J. Non-Cryst. Solids, 1984, 63, 243.
Vossen, J.L., J. Phys. Thin Films, 1977, 9, 1.
Nakahara, T.; Takahata, K.; Matsuura, S.; Proc. Electrochem. Soc, 1987, 87–89, 55.
11. Kane, J.; Schweizer, H.P.; Kern, W.; J. Electrochem. Soc, 1975, 122, 1144.
Marton, J.P.; Lepic, D.A.; J. Electrochem. Soc., 1976, 123, 234.
Rnadhawa, H.S.; Mathews, W.D.; Bunshah, R.F.; Thin Solid Films, 1981, 83, 267.
Lehman, H.W.; Widner, R.; Thin Solid Films, 1975, 27, 359.
Muranaka, S.; Bando, Y.; Takada, T.; Thin Solid Films, 1981, 86, 11.
12. Hampden-Smith, M.J.; Wark, T.A.; Coord. Chem. Rev.; 1992, 112, 81
13. Chandler, C.D.; Falion, G.D.; Koplick, A.J.; West, B.O.; Aut. J. Chem.; 1987, 40, 1427.
14. Narula, C.K.; Watkins, W.L.H.; Shelef, M.; US 5,210,062, 1993.
15. Pakko, J.D., Adamczyk, A.A. Jr, Siegl, W.O., Pawlowicz, R.J., SAE Technical Paper Series, #941999, Feb. 1994.

Automotive Applications of Sol-Gel Processed Materials: Novel, Low Power Consumption, Electrically Heatable Catalyst Devices

  • S. R. Nakouzi (a1), J. R. McBride (a2), K. E. Nietering (a2), J. H. Visser (a2), A. A. Adamczyk (a3) and C. K. Narula (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed