Skip to main content Accessibility help
×
×
Home

Atomistic Simulations of Cross-Slip Processes in Model FCC Structures and L10 TiAl

  • S. Rao (a1) (a2)

Abstract

Three dimensional (3D) cross-slipped core structures of a/2[110] screw dislocations in model FCC structures are simulated using lattice statics within the Embedded Atom Method (EAM) formalism using potentials fitted to the elastic and structural properties of FCC Ni as well as L10TiAl. 2 and 3-D Green's function (GF) techniques are used to relax the boundary forces in the simulations. The core structure of the constrictions are diffuse. At large separation distances between Shockley partials in the unconstricted configuration, the two constrictions formed by cross-slip onto a cross {111} plane have significantly different energy profiles suggesting that self-stress forces dominate the energetics of the cross-slip process. The variation in cross-slip energy with stacking-fault energy is in reasonable agreement with continuum predictions, excepting at high fault energy values as in L10TiAl. Cross-slip energies estimated for Cu, Ni and γ-TiAl from these calculations show reasonable agreement with experimental data. The cross-slip energy shows a significantly weaker dependence on Escaig stress as compared to elasticity calculations, with the activation volume for the cross-slip process being approximately 20b3 at an applied Escaig stress of 10-3μ in Cu.

Copyright

References

Hide All
1 Jackson, P.J., 1985, Prog.Mater.Sci., 29, 139.
2 Paidar, V., Pope, D.P., and Vitek, V., 1984, Acta metall., 30, 435.
3 Couret, A., and Caillard, D., 1988, Acta.metall., 36, 215.
4 Greenberg, B.A., Antonova, O.V., Indenbaum, V.N., Karkina, L.I., Notkin, A.B., Ponomarev, M.V., and Smirnov, L.V., 1991, Acta.metall.mater., 39, 233.
5 Dimiduk, D.M., 1991, J.Physique III, 1, 1025.
6 Louchet, F., and Viguier, B., 1995, Phil.Mag. A, 71, 1313.
7 Shi, X., Pollock, T., Mahajan, S., and Arunachalam, V.S., 1997, Mat. Res.Soc.Symp.Proc., 460, 493.
8 Sriram, S., Dimiduk, D.M., Hazzledine, P.M., and Vasudevan, K., 1997, Phil.Mag.A, 76, 965.
9 Humphreys, F.J., and Hirsch, P.B., 1970, Proc.Royal.Soc.A, 318, 73.
10 Schoeck, G., and Seeger, A, 1955, Defects in crystalline solids, Phys.Soc. London, 340.
11 Fleischer, R.L., 1959, Acta.metall., 7, 134.
12 Escaig, B., 1968, Proc.Battelle.Colloq. Dislocation Dynamics, edited by Rosenfield, A.R., Hahn, G.T., Bement, A.L. Jr and Jaffee, R.I. (New York: McGraw Hill), p655.
13 Duesbery, M., Louat, N.P. and Sadananda, K., 1991, Acta.metall.mater., 40, 149.
14 Rao, S.I., Parthasarathy, T.A., and Woodward, C., 1998b, accepted for publication in Phil.Mag.A.
15 Friedel, J., 1957, Dislocations and Mechanical Properties of Crystals (Wiley: New York), p330.
16 Stroh, A.N., 1954, Proc.Phys.Soc.B, 67, 427.
17 Bonneville, J., and Escaig, B., 1979, Acta metall., 27, 1477.
18 Puschl, W., 1990, Phys.stat.sol.b, 162, 363.
19 Puschl, W., and Schoeck, G., 1993, Mat.Sci. and Eng.A, 164, 286.
20 Saada, G., 1991, Mat.Sci. and Eng.A, 137, 177.
21 Kubin, L.P., Canova, G., Condat, M., Devincre, B., Pontikis, V., and Brechet, Y., 1992, Solid state phenomenon, 23–24, 455.
22 Mills, M.J., and Chrzan, D.C., 1992, Acta metall., 40, 3051.
23 Devincre, B., Veyssiere, P., Kubin, L.P., and Saada, G., 1997, Phil.Mag. A, 75, 1263.
24 Devincre, B., and Kubin, L.P., 1994, Modelling Simul.Mater.Sci.Eng., 2, 559.
25 Tang, M., Kubin, L.P., and Canova, G.R., 1998, Acta Mater., 46, 3221.
26 Rasmussen, T., Jacobsen, K.W., Leffers, T., and Pedersen, O.B., 1997, Phys.Rev.B, 56(6), 2977.
27 Rasmussen, T., Jacobsen, K.W., Leffers, T., and Pedersen, O.B., 1997, Mat.Sci and Eng. A, 234–236, 544.
28 Duesbery, M.S., 1983, Acta metall., 31, No.10, 1747.
29 Parthasarathy, T.A., Dimiduk, D., and Saada, G., 1993, Mat.Res.Soc.Symp.Proc., 288, 311.
30 Bulatov, V.V., Yip, S., and Argon, A.S., 1995, Phil.Mag.A, 72, 1995.
31 Parthasarathy, T.A., and Dimiduk, D, 1996, Acta Mater., 44, 2237.
32 Rao, S.I., Hemandez, C., Simmons, J.P., Parthasarathy, T.A., and Woodward, C., 1998a, Phil.Mag.A, 77, No.1, 231.
33 Simmons, J.P., Rao, S.I., and Dimiduk, D, 1998, accepted for publication in Phil.Mag.letters.
34 Daw, M.S., and Baskes, M.I., 1984, Phys.Rev. B., 29, 6443.
35 Finnis, M.W., and Sinclair, J.E., 1984, Phil.Mag.A, 50, 45.
36 Voter, A.F., and Chen, S.P., 1987, Mater.Res.Soc.Symp.Proc., 82, 175.
37 Rao, S.I., Parthasarathy, T.A., and Woodward, C., 1991, Mat.Res.Soc.Symp.Proc., 213, 125.
38 Simmons, J.P., Rao, S.I., and Dimiduk, D, 1997, Phil.Mag.A, 75, 1299.
39 Hirth, J.P., and Lothe, J., 1982, Theory of dislocations, second edition (New York: John Wiley and Sons).
40 Stroh, A.N., 1958, Phil.Mag, 3, 625.
41 Vitek, V., 1974, Cryst.Lattice.Defects, 5, 1.
42 Carter, C.B., and Holmes, S.M., 1977, Phil.Mag.A, 35, 1161.
43 Clement, P.N., and Coulomb, P., 1974, PhilMag., 30, 363.
44 Stobbs, W.M., and Sworn, C.H., 1971, Phil.Mag., 24, No.2, 1365.
45 Bonneville, J., Escaig, B., and Martin, J.L., 1988, Acta.Metall., 36, 1989.
46 Hull, D., and Bacon, D.J., 1984, Introduction to dislocations, third edition (Pergamon).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed