Skip to main content Accessibility help
×
Home

Atomistic Monte Carlo Simulations of Surface Segregation in (Fe x Mn 1-x )O and (Ni x Co 1-x )O

  • C. Battaile (a1), R. NajafBdi (a2) and D. J Srolovitz (a1)

Abstract

An atomistic Monte Carlo (MC) method has been used to predict equilibrium segregation of isovalent cations to (001) surfaces in (Fex.Mn-x)O and (NixCol-x)O. The surface is found to be enriched with solvent in both systems. Long-range electrostatic interactions and atomic motions that occur on small time scales make the MC approach very computationally demanding. The Free Energy Minimization (FEM) method is a more efficient alternative for performing such segregation simulations, but involves several approximations. Comparison of the surface segregation profiles determined using the MC and FEM simulation methods show that the two are essentially indistinguishable. The FEM results can be obtained about 1,000 times faster than the MC predictions. Therefore, the FEM method is a practical and accurate alternative to the more cumbersome MC approach.

Copyright

References

Hide All
1. Foiles, S.M., Phys. Rev. B, 32, 7685–93 (1985).
2. Mackrodt, W.C. and Tasker, P.W., J. Amer. Ceram. Soc., 72, 1576–83 (1989).
3. Najafabadi, R., Wang, H.Y., Srolovitz, D.J., and LeSar, R., Acta metall., 39, 3071–82 (1991).
4. Zhao, L., Najafabadi, R., and Srolovitz, D.J., Modelling Simul. Mater. Sci., 1, 539–51 (1993).
5. Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33, 7983–91 (1986).
6. LeSar, R., Najafabadi, R., and Srolovitz, D.J., Phys. Rev. Lett., 63, 624–7 (1989).
7. Sutton, A.P., Phil. Mag. A, 60, 147–59 (1989).
8. Battaile, C., Najafabadi, R., and Srolovitz, D.J. in Structure and Properties of Interfaces in Ceramics, edited by Bonnell, D. Rühle, M., and Chowdhry, U. (Mater. Res. Soc. Proc. 357, Pittsburgh, 1995) pp. 435–40.
9. Norgett, M.J., J. Phys. C, 4, 298306 (1971).
10. Chen, T.S., de Wette, F.W., and Alldredge, G.P., Phys. Rev. B, 15, 1167–86 (1977).
11. Mackrodt, W.C. and Tasker, P.W., J. Amer. Ceram. Soc., 72, 1576–83 (1989).
12. Ewald, P.P., Annalen der Physik, 64, 253–87 (1921).
13. Dick, B.G. and Overhauser, A.W., Phys. Rev., 112, 90103 (1958).
14. Sangster, M.J.L. and Stoneham, A.M., Phil. Mag. B, 43, 597608 (1981).
15. Grimes, R.W. and , S. Vyas (private communication).
16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N.. Teller, A.H., and Teller, E., J. Chem. Phys. 21, 1087–92 (1953).
17. Battaile, C., Najafabadi, R., and Srolovitz, D.J., J. Amer. Ceram. Soc. (1995) in press.
18. Vaks, V.G., Larkin, A.I., and Pikin, S.A., Sov. Phys. JETP 24, 240–9 (1967).

Related content

Powered by UNSILO

Atomistic Monte Carlo Simulations of Surface Segregation in (Fe x Mn 1-x )O and (Ni x Co 1-x )O

  • C. Battaile (a1), R. NajafBdi (a2) and D. J Srolovitz (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.