Skip to main content Accessibility help

Atomistic Modeling of Void Growth and Coalescence in Ni+H

  • B.P. Somerday (a1), P.D. Pattillo (a2), M.F. Horstemeyer (a1) and M.I. Baskes (a3)


Finite strain rate atomistic simulations were conducted on Ni and Ni+H lattices containing voids to better understand the dislocation-scale mechanisms of void growth and coalescence and how hydrogen affects these damage processes. Void growth is governed by dislocations that nucleate at the void surface to transport mass away from the void as well as dislocations arriving at the void from the lattice exterior to deposit vacancies and accommodate void-surface expansion. Hydrogen can retard void growth when large local hydrogen concentrations impede dislocation nucleation and propagation at the void surface. The formation of hydrogen gas molecules in the void interior does not necessarily aid void growth. Pressure in small voids may be mitigated by the mutual interaction of hydrogen molecules and the interaction of molecules with the void surface.



Hide All
1. VanStone, R. H., Cox, T. B., Low, J.R., and Psioda, J. A., Int. Met. Rev. 30, p. 157 (1985).
2. Garrison, W.M. and Moody, N. R., J. Phys. Chem. Solids 48, p. 1035 (1987).
3. Wilsdorf, H. G. F., Mater. Sci. Eng. 59, p. 1 (1983).
4. Thompson, A. W. and Bernstein, I. M., in Advances in Research on the Strength and Fracture of Materials, edited by Taplin, D.M.R. (Pergamon Press 2A, New York 1977), pp. 249254.
5. Thompson, A. W., Met. Trans. 5, p. 1855 (1974).
6. Thompson, A. W. and Wilcox, B. A., Scripta Metall. 6, p. 689 (1972).
7. Smith, G. C., in Hydrogen in Metals, edited by Bernstein, I.M. and Thompson, A.W. (ASM, Metals Park, OH 1974), pp. 485513.
8. Daw, M. S., Foiles, S. M., and Baskes, M. I., Mat. Sci. Rep. 9, p. 251 (1993).
9. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, p. 6443 (1984).
10. Angelo, J. E., Moody, N. R., and Baskes, M. I., Modelling Simul. Mat. Sci. Eng. 3, p. 289 (1995).
11. Baskes, M. I., Angelo, J. E., and Moody, N. R., in Hydrogen Effects in Materials, edited by Thompson, A.W. and Moody, N.R. (TMS, Warrendale, PA 1996), pp. 7790.
12. Baskes, M. I., Sha, X., Angelo, J. E., and Moody, N. R., Modelling Simul. Mat. Sci. Eng. 5, p. 651 (1997).
13. Windle, A. H. and Smith, G. C., Met. Sci. J. 2, p. 187 (1968).
14. Birnbaum, H.K., Robertson, I.M., Sofronis, P., and Teter, D., in Corrosion-Deformation Interactions CDI '96, edited by Magnin, T. (The Institute of Materials, London 1997), pp. 172195.
15. Lynch, S. P., Acta Metall. 36, p. 2639 (1988).
16. Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992, pp. 142171.
17. Thompson, A. W., in Effect of Hydrogen on Behavior of Materials, (Metallurgical Society of AIME, Warrendale, PA 1976), pp. 467479.
18. Courtney, T. H., Mechanical Behavior of Materials. McGraw-Hill, New York, 1990, p. 83.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed