Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T07:10:34.995Z Has data issue: false hasContentIssue false

Atomistic Modeling Of Ternary And Quaternary Ordered Intermetallic Alloys

Published online by Cambridge University Press:  21 March 2011

Guillermo Bozzolo
Affiliation:
Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, OH 44142.
Joseph Khalil
Affiliation:
National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH 44135.
Matthew Bartow
Affiliation:
National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH 44135.
Ronald D. Noebe
Affiliation:
National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH 44135.
Get access

Abstract

The structure of ternary and quaternary NiAl-based ordered intermetallic alloys is studied using the BFS method for alloys. A simple calculational procedure, based on the determination of the energetics of local environments surrounding defect atoms is introduced and applied to the study of the defect structure and phase formation in NiAl-based systems. The procedure is illustrated with two different examples: 1) the phase structure of Ni-Al-Fe alloys, focusing on the concentration dependence of the site preference behavior of Fe in NiAl, and 2) the precipitation of a β′ phase in NiAl(Ti,Hf) alloys, focusing on the role of Hf in lowering the solubility limit of Ti in NiAl, thus enhancing the precipitation of a Heusler Ni2Al(Ti,Hf) phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bozzolo, G. and Ferrante, J., J. Computer-Aided Mater. Design 2 (1995) 113;10.1007/BF00701617Google Scholar
Bozzolo, G., Noebe, R. D. and Honecy, F., Intermetallics 8 (2000) 7.10.1016/S0966-9795(99)00066-7Google Scholar
2. Anderson, I. M., Duncan, A. J., Bentley, J., Intermetallics 7 (1999) 1017, and refs. therein.10.1016/S0966-9795(99)00013-8Google Scholar
3. Wilson, A. W., Ph.D. Thesis, University of Virginia, 1999.Google Scholar
4. Smith, J. R., Perry, T., Banerjea, A., Ferrante, J. and Bozzolo, G., Phys. Rev. B 44 (1991) 6444;10.1103/PhysRevB.44.6444Google Scholar
Bozzolo, G., Ferrante, J. and Rodriguez, A. M., J. Comp.-Aided Mater. Design 1 (1993) 285.10.1007/BF00712853Google Scholar
5. Bozzolo, G., Amador, C., Ferrante, J. and Noebe, R. D., Scripta Metall. 33 (1995) 1907.10.1016/0956-716X(95)00474-AGoogle Scholar
6. Andersen, O. K., Phys. Rev. B 12 (1975) 3060.10.1103/PhysRevB.12.3060Google Scholar
7. Wilson, A. W., Howe, J. M., Garg, A. and Noebe, R. D., Mat. Sci. Eng. A 289 (2000) 162.10.1016/S0921-5093(00)00841-8Google Scholar
8. Garg, A., Noebe, R. D., Howe, J. M., Wilson, A. and Levit, V., in Proceedings of Microscopy and Microanalysis, 1996, Eds. Bailey, G. W., Corbett, J. M., Dimlich, R. V. W., Michael, J. R. and Zaluzec, N. J., San Francisco Press, San Francisco, 1996, p. 998.Google Scholar
9. Garg, A. and Noebe, R. D., Scripta Mater. 39 (1998) 437.10.1016/S1359-6462(98)00219-XGoogle Scholar