Skip to main content Accessibility help

Atomistic modeling of elasticity, plasticity and fracture of protein crystals

  • Markus J. Buehler (a1)


The structure and behavior of proteins plays an overarching role in determining their function in biological systems. In recent years, proteins have also been proposed as basis for new materials to be used in technological applications (Langer and Tirrell, Nature, 2004). It is known that protein crystals show very interesting mechanical behavior, as some of them are extremely fragile, while others can be quite sturdy. However, unlike other crystalline materials like silicon or copper, the mechanical properties of protein crystals have rarely been studied by atomistic computer modeling. As a first step towards more fundamental understanding of the mechanics of those materials, we report atomistic studies of mechanical properties of protein crystals using empirical potentials focusing on elasticity, plasticity and fracture behavior. Here we consider the mechanics of a small protein α-conotoxin PnIB from conus pennaceus. We use large-scale atomistic simulations to determine the low-strain elastic constants for different crystallographic orientations. We also study large-strain elastic properties including plastic deformation. Furthermore, we perform systematic studies of the effect of mutations on the elastic properties of the protein crystal. Our results indicate a strong impact of mutations on elastic properties, showing the potential of mutations to tailor mechanical properties. We conclude with a study of mode I fracture of protein crystals, relating our atomistic modeling results with Griffith's theory of fracture.



Hide All
[1] Hu, S. H., Gehrmann, J., Guddat, L. W., Alewood, P. F., Craik, D., Martin, J. L., Structure 4 (1996) 417423.
[2] Langer, R., Tirrell, D. A., Nature 428 (2004) 487492.
[3] Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D., Tirrell, D. A., Science 281 (1998) 389392.
[4] Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Debolt, S., Ferguson, D., Seibel, G., Kollman, P., Computer Physics Communications 91 (1995) 141.
[5] Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kale, L. V., Skeel, R. D., Schulten, K., International Journal Of Supercomputer Applications And High Performance Computing 10 (1996) 251268.
[6] Tsai, D. H., J. of Chemical Physics 70 (1979) 13751382.
[7] Zhou, M., Phil. Mag. A 82 (2002).
[8] deCelis, B., Argon, A. S., Yip, S., J. Appl. Phys. 54 (1983) 48644878.
[9] Cheung, K. S., Yip, S., Modelling Simul. Mater. Eng. 2 (1993) 865892.
[10] Buehler, M. J., Abraham, F. F., Gao, H., Nature 426 (2003) 141146.
[11] Abraham, F. F., Brodbeck, D., Rudge, W. E., Xu, X., J. Mech. Phys. Solids 45 (1997) 15951619.
[12] Abraham, F. F., Brodbeck, D., Rafey, R. A., Rudge, W. E., Phys. Rev. Lett. 73 (1994) 272275.
[13] Buehler, M. J., Gao, H., Nature (2006).
[14] Gao, H., Ji, B., Buehler, M. J., Yao, H., Mechanics & Chemistry of Biosystems 1 (2004) 3752.
[15] Gao, H., Ji, B., Jäger, I. L., Arzt, E., Fratzl, P., Natl, P.. Acad. Sci. USA 100 (2003) 55975600.
[16] Duin, A. C. T. v., Dasgupta, S., Lorant, F., Goddard, W. A., J. Phys. Chem. A 105 (2001) 93969409.
[17] Caylor, C. L., Speziale, S., Kriminski, S., Duffy, T., Zha, C. S., Thorne, R. E., Journal of Crystal Growth 232 (2001) 498.
[18] Speziale, S., Jiang, F., Caylor, C. L., Kriminski, S., Zha, C. S., Thorne, R. E., Duffy, T. S., Biophysical Journal 85 (2003) 32023213


Atomistic modeling of elasticity, plasticity and fracture of protein crystals

  • Markus J. Buehler (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed