Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T06:13:27.662Z Has data issue: false hasContentIssue false

Atomic-Scale Simulations of Structural Properties of Ceramics

Published online by Cambridge University Press:  15 February 2011

D. J. Keffer
Affiliation:
Code 6179, Naval Research Laboratory, Washington, DC 20375
F. H. Streitz
Affiliation:
Physics Department, Auburn University, Auburn, AL 36849
J. W. Mintmire
Affiliation:
Code 6179, Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

We have recently developed a novel computational method for molecular dynamics simulations of metal oxide ceramics. This approach explicitly includes variable charge transfer between anions and cations. This method has been used to model the structural properties of bulk and surface alumina and aluminum systems including tensile failure of the bulk systems, as well as to model the rupture under tensile stress of an interface between a (0001) face of a-alumina and a (111) face of aluminum. We have applied this method to perform atomic-scale simulations of nanoindentation of ceramic and model rigid tips onto metal and ceramic substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singer, I. L., and Pollock, H. M., Fundamentals of Friction, Kluwer, Dordrecht, 1992.Google Scholar
2. Bhushan, B., Israelachvili, J. N., and Landman, U., Nature 374, 607 (1995).Google Scholar
3. Singer, I., J. Vac. Sci. Technol A 12, 2605 (1994).Google Scholar
4. Tabor, D. and Winterton, R. H. S., Proc. Roy. Soc. London A 312, 435 (1969);Google Scholar
Israelachvili, J. N., Tabor, D., Nature 241, 148 (1973); Wear 24, 386 (1973).Google Scholar
5. Binnig, G., Rohrer, H., Ch., Gerber, and Weibel, E., Phys. Rev. Lett. 49, 57 (1982); Phys. Rev. Lett. 50, 120 (1983).Google Scholar
6. Binnig, G., Quate, C.F., and Ch., Gerber, Phys. Rev. Lett. 56, 930 (1986).Google Scholar
7. Mate, C. M., McClelland, G. M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett. 59, 1942 (1987);Google Scholar
Meyer, G. and Amer, N. M., Appl. Phys. Lett. 56, 2100 (1990).Google Scholar
8. Yoshizawa, H., Chen, Y.-L., and Israelachvili, J., J. Phys. Chem. 97, 4128 (1993).Google Scholar
9. Harrison, J. A. and Brenner, D. W., in The Handbook of Micro/Nanotribology, edited by Bhushan, B., CRC Press, Boca Raton, 1995, pp. 397439.Google Scholar
10. Streitz, F. H. and Mintmire, J. W., J. Adhes. Sci. Technot. 8, 853 (1994); Phys. Rev. B 50, 11996 (1994).Google Scholar
11. Streitz, F. H. and Mintmire, J. W., Langmuir 12, 4605 (1996).Google Scholar
12. Streitz, F. H. and Mintmire, J. W., Composite Interfaces 2, 473 (1994).Google Scholar
13. Iczkowsky, R. P. and Margrave, J. L., J. Am. Chem. Soc. 83, 3547, (1961).Google Scholar
14. Parr, R. G., Donnelly, R. A., Levy, M., and Palke, W. E. J., J. Chem. Phys. 68, 3801 (1978).Google Scholar
15. Parr, R. G. and Pearson, R. G., J. Am. Chem. Soc. 105, 7512 (1983).Google Scholar
16. Rappé, A. K. and Goddard, W. A., J. Phys. Chem. 95, 3358 (1991).Google Scholar
17. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983);Google Scholar
Phys. Rev. B 29, 6443 (1984);Google Scholar
Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983, (1986).Google Scholar
18. Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984).Google Scholar
19. Abell, G. C., Phys. Rev. B 31, 6184 (1985).Google Scholar
20. Tersoff, J., Phys. Rev. Lett. 61, 2879 (1988); Phys. Rev. Lett. 56, 632 (1986).Google Scholar
21. Brenner, D. W., Phys. Rev. B 42, 9458 (1990).Google Scholar
22. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971.Google Scholar
23. Berendsen, H. J. C, Postman, J. P. M., Van Gusteren, W. F., DiNola, A., and Haak, J. R., J. Chem. Phys. 81, 3684 (1984).Google Scholar
24. Charig, J. M., Appl. Phys. Lett. 10, 139 (1967).Google Scholar
25. Chang, C. C., J. Appl. Phys. 39, 5570 (1968).Google Scholar