Skip to main content Accessibility help

Atomic-Level and Effective Elastic Moduli at Grain Boundaries

  • I. Alber (a1), J. L. Bassani (a1), M. Khantha (a2), V. Vitek (a2) and G. J. Wang (a2)...


The relationship between atomic structure and elastic properties of grain boundaries is investigated from both discrete and continuum points of view. A heterogeneous continuum model of the boundary is introduced where distinct phases are associated with individual atoms and possess their atomic level elastic moduli determined from the atomistic model. The complete fourth-order tensors of both the atomic-level and the effective elastic moduli are determined, where the latter are defined for sub-blocks from an infinite bicrystal and are calculated here for a relatively small number of atom layers above and below the grain boundary. These effective moduli are determined exactly for the discrete atomistic model, while only estimates from upper and lower bounds can be determined for the continuum model. Comparison between the atomistic results and those for the continuum model establishes the validity of this definition of elastic properties for heterogeneous structures at these scales. Furthermore, these comparisons as well as algebraic properties of the fourth-order tensor of moduli lead to criteria to assess the stability of a given grain boundary structure.



Hide All
1. Ishida, Y., editor, Grain Boundary Structure and Related Phenomena, Trans. Japan Inst. Metals, 27 (1986).
2. Raj, R., and Sass, S. L., editors, Interface Science and Engineering ‘87, J. Phys. Paris, 49, C5 (1988).
3. Yoo, M. H., Clark, W. A. T., and Briant, C. L., editors, Interfacial Structure, Properties and Design, (Pittsburgh: Materials Research Society), Vol.122 (1988).
4. Aucouturier, M., editor, Intergranular and Interphase Boundaries in Materials, J. Phys. France, 51, C1 (1990).
5. Rihle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P., editors, Metal-Ceramic Interfaces, (Oxford: Pergamon Press,1990).
6. Balluffi, R. W., Riihle, M., and Sutton, A. P., Mater. Sci. Eng., 89, 1 (1987).
7. Wolf, D., and Kluge, M, Scripta Metall., 24, 907 (1990).
8. Wolf, D., and Lutsko, J. F., J. Mater. Res., 4, 1427 (1989).
9. Wolf, D., Lutsko, J. F., and Kluge, M., Atomistic Simulation of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D. J., (New York: Plenum Press), p. 245 (1989).
10. Adams, J. B., Wolfer, W. G., and Foiles, S. M., Phys. Rev., B, 40, 9479 (1989).
11. Alber, I, Bassani, J. L., Khantha, M, Vitek, V., Wang, G., “Grain Boundaries as Heterogeneous Systems: Atomic and Continuum Elastic Properties,” submitted to Trans. Roy. Soc. Lond. (1991).
12. Born, M., and Huang, K., Dynamical Theory of Crystal Lattices, (Oxford: Clarendon Press, 1954).
13. Martin, J. W., J. Phys. C: Solid State Phys., 8, 2837 (1975).
14. Martin, J. W., J. Phys. C: Solid State Phys., 8,, 2858 (1975).
15. Wang, G. J., Sutton, A. P.,and Vitek, V.,Acta Metall., 32, 1093 (1984).
16. Finnis, M.W., and Sinclair, J.E., Phil. Mag., A, 50, 45 (1984).
17. Ackland, G.J., Finnis, M.W., and Vitek, V., J.Phys.F: Metal Phys., 18, L153 (1988).
18. Knops, R.J., and Payne, L.E., Uniqueness Theorems in Linear Elasticity, (New York: Springer), Vol.19 (1971).
19. Willis, J. R., Advances in Applied Mechanics, 21, 1; 1983, J. Appl. Mech., 50, 1202(1981).
20. Gurtin, M.E., Q. Appl. Math., 20, 379 (1963).
21. Milton, G. W., Comm. on Pure and Appl. Math, 43, 63 (1990).
22. Bassani, J. L., and Qu, J., 1990, Metal-Ceramic Interfaces, edited by Rühle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P., (Oxford: Pergamon Press).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed