Skip to main content Accessibility help
×
Home

Atomically Abrupt and Smooth Heterointerfaces: An Optical Investigation

  • Colin A. Warwick (a1), William Y. Jan (a1), Abbas Ourmazd (a1), Timothy D. Harris (a2) and JÜdrgen Christen (a3)...

Abstract

Luminescence spectra from quantum wells are routinely interpreted in terms of atomically smooth and atomically abrupt interfaces. Here we show that this interpretation is inconsistent with photoluminescence, photoluminescence excitation, and quantitative microscopic (chemical lattice imaging) results. We argue that the discussion of interfacial roughness in terms of “an island size” is too naive. A full characterization of an interface requires the description of a “roughness spectrum”, specifying the amplitude of the interfacial corrugation vs corrugation wavelength over the relevant length scale.

Copyright

References

Hide All
[1] Weisbuch, C., Dingle, R., Gossard, A. C., and Wiegman, W., Solid State Commun. 38, 709 (1981).
[2] Goldstein, L., Horokoshi, Y., Tarucha, S., and Okamoto, H., Japan. J. Appl. Phys. 22, 1489 (1983).
[3] Reynolds, D. C., Bajaj, K. K, Litton, C. W., Yu, P. W., Singh, Jasprit, Masselink, W. T., Fisher, R., and Morkoq, H., Appl. Phys. Lett. 46, 51 (1985).
[4] Miller, R. C., Tu, C. W., Sputz, S. K, and Kopf, R. F., Appl. Phys. Lett. B49, 1245 (1986). C. W. Tu, R. C. Miller, B. A. Wilson, P. M. Petrofl T. D. Harris, R. F. Kopf, S. K. Sputz, and M. G. Lamont, J. Crystal Growth 81 159 (1987). P. M. Petroff, J. Cibert, A. C. Gossard, G. J. Dolan, and C. W. Tu, J. Vac. Sci. & Technol. B5 1204 (1987).
[5] Voillet, F., Madhukar, A., Kim, J. Y., Chen, P., Cho, N. M., Tang, W. C., and Newman, P. G., Appl. Phys. Lett. 48 1009 (1986).
[6] Bimberg, D., Christen, J., Fukunaga, T., Nakashima, H., Mars, D. E., and Miller, J. N., J. Vac. Sci. & Technol. B5 1191 (1987).
[7] Ourmazd, A., Taylor, D. W., Cunningham, J., and Tu, C. W., Phys. Rev. Lett. 62, 933 (1989).
[8] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes in C (Cambridge University Press, Cambridge, England, 1988) pp.540548.
[9] Solution of Schr6dinger equation assuming a barrier energy gap of (1.992±0.003)eV, well band gap of 1.5192 eV, 60% of the band offset in the conduction band, free exciton binding energy independent of well width, and effective mass numbers (electron, barrier, well, heavy hole) of meb=0.098, mew=0.067, mnnb =0.410 and mhhw=0.377. The results are very sensitive to the band offset, which is not very well known. However, all “smooth island” theories predict the splitting should be constant.
[10] Ogale, S. B., Madhukar, A., Voillot, F., Thomsen, M., Tang, W. C., Lee, T. C., Kim, J. Y., and Chen, P., Phys. Rev. B 36 1662 (1987)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed