Skip to main content Accessibility help
×
Home

Atomic simulations of GB sliding in pure and segregated bicrystals

  • Motohiro Yuasa (a1), Yasumasa Chino (a1) and Mamoru Mabuchi (a2)

Abstract

Grain boundary (GB) sliding is an important deformation mode in polycrystals, and it has been extensively investigated, for example, there are many studies on influences of the atomic geometry in the GB region. However, it is important to investigate GB sliding from the electronic structure of GB for deeper understandings of the sliding mechanisms. In the present work, we investigated the GBs sliding in pure and segregated bicrystals with classical molecular dynamics (MD) simulations and first-principles calculations. It is accepted that the sliding rate is affected by the GB energy. However, there was no correlation between the sliding rate and the GB energy in either the pure or the segregated bicrystals. First-principles calculations revealed that the sliding rate calculated by the MD simulations increases with decreasing minimum charge density at the bond critical point in the GB. This held in both the pure and segregated bicrystals. It seems that the sliding rate depends on atomic movement at the minimum charge density sites.

Copyright

References

Hide All
1. Watanabe, T., Mater. Sci. Eng. A 166, 11 (1993).10.1016/0921-5093(93)90306-Y
2. Langdon, T. G., Mater. Sci. Eng. A 166, 67 (1993).10.1016/0921-5093(93)90311-2
3. Namilae, S., Chandra, N., and Nieh, T. G., Scripta Mater. 46, 49 (2002).10.1016/S1359-6462(01)01195-2
4. Swygenhoven, H. V., and Derlet, P. M., Phys. Rev. B 64, 224105 (2001).10.1103/PhysRevB.64.224105
5. Meyers, M. A., Mishra, A., and Benson, D. J., Prog. Mater. Sci. 51, 427 (2006).10.1016/j.pmatsci.2005.08.003
6. Sansoz, F., and Molinari, J. F., Acta Mater. 53, 1931 (2005).10.1016/j.actamat.2005.01.007
7. Wolf, D., Acta Metall.Mater. 38, 781 (1990).10.1016/0956-7151(90)90030-K
8. Yin, W. M., Whang, S. H., and Mirshams, R. A., Acta Mater. 53, 383 (2005).10.1016/j.actamat.2004.09.034
9. Briant, C. L., and Banerji, S. K., Int. Met. Rev. 23, 164 (1978).10.1179/imr.1978.23.1.164
10. Wang, Y. M., Cheng, S., Wei, Q. M., Ma, E., Nieh, T. G., and Hamza, A., Scripta Mater. 51,1023 (2004).10.1016/j.scriptamat.2004.08.015
11. Schweinfest, R., Paxton, A. T., and Finnis, M. W., Nature 432 1008 (2004).10.1038/nature03198
12. Yamaguchi, M., Shiga, M., and Kabraki, H., Science 307, 393 (2005).10.1126/science.1104624
13. Wu, R., Freeman, A. J., and Olson, G. B., Science 265, 376 (1994).10.1126/science.265.5170.376
14. Millett, P. C., Selvam, R. P., and Saxena, A., Mater. Sci. Eng. A 431, 92 (2006).10.1016/j.msea.2006.05.074
15. Du, N., Qi, Y., Krajewski, P. E., and Bower, A. F., Metall. Mater. Trans. A 42, 651 (2011).10.1007/s11661-010-0326-z
16. Melchionna, S., Ciccotti, G., and Hoover, H. B. L., Mol. Phys. 78, 533 (1993).10.1080/00268979300100371
17. Parrinello, M., and Rahman, A., J. Appl. Phys. 527, 182 (1981).
18. Zhou, X.W., Wadley, H. N. G., Johnson, R. A., Larson, D. J., Tabat, N., Cerezp, A., Petford-Long, A. K., Smith, G. D. W., Clifton, P. H., Martens, R. L., and Kelly, T. F., Acta Mater. 49, 4005 (2001).10.1016/S1359-6454(01)00287-7
19. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).10.1103/RevModPhys.64.1045
20. Hohenberg, P., and Kohn, W., Phys. Rev. 136, B864 (1964).10.1103/PhysRev.136.B864
21. Kohn, W., and Sham, L., Phys. Rev. 140, A1133 (1965)10.1103/PhysRev.140.A1133
22. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)10.1103/PhysRevLett.77.3865
23. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).10.1103/PhysRevB.41.7892
24. Millet, P. C., Selvam, R. P., Bansal, S., and Saxena, A., Acta Mater. 53, 3671 (2005).10.1016/j.actamat.2005.04.031
25. Eberhart, M. E., Clougherty, D. P., and MacLaren, J. M., J. Am. Chem. Soc. 115, 5262 (1993).10.1021/ja00066a048
26. Kioussis, N., Herbranson, M., Collins, E., and Eberhart, M. E., Phys. Rev. Lett. 88, 125501 (2002).10.1103/PhysRevLett.88.125501
27. Detor, A. J., and Schuh, C. A., Acta Mater. 55, 4221 (2007).10.1016/j.actamat.2007.03.024
28. Kirchheim, R., Acta Mater. 50, 413 (2002).10.1016/S1359-6454(01)00338-X

Keywords

Atomic simulations of GB sliding in pure and segregated bicrystals

  • Motohiro Yuasa (a1), Yasumasa Chino (a1) and Mamoru Mabuchi (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed