Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T18:55:43.263Z Has data issue: false hasContentIssue false

Atomic Self-ordering in Heteroepitaxially Grown Semiconductor Quantum Dots due to Relaxation of External Lattice Mismatch Strains

Published online by Cambridge University Press:  17 March 2011

Peter Möck
Affiliation:
Department of Physics (MC 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607- 7059, U.S.A; pmoeck@uic.edu
Teya Topuria
Affiliation:
Department of Physics (MC 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607- 7059, U.S.A; pmoeck@uic.edu
Nigel D. Browning
Affiliation:
Department of Physics (MC 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607- 7059, U.S.A; pmoeck@uic.edu
Robin J. Nicholas
Affiliation:
Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K
Roger G. Booker
Affiliation:
Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, U.K
Get access

Abstract

Thermodynamic arguments are presented for the formation of atomic order in heteroepitaxially grown semiconductor quantum dots. From thermodynamics several significant properties of these systems can be derived, such as an enhanced critical temperature of the disorder-order transition, the possible co-existence of differently ordered domains of varying size and orientation, the possible existence of structures that have not been observed before in semiconductors, the occurrence of atomic order over time, and the occurrence of short range order when the growth proceeds at low temperatures. Transmission electron microscopy results support these predictions. Finally, we speculate on the cause for the observed increase in life time of (In,Ga)As/GaAs quantum dot lasers [H-Y. Liu et al., Appl. Phys. Lett. 79, 2868 (2001)].

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pearsall, T.P. (editor), “Quantum Semiconductor Devices and Technologies”, (Kluwer Academic Publishers, 2000).Google Scholar
2. Kim, H.J. and Xie, Y.H., Appl. Phys. Lett. 79, 263 (2001).Google Scholar
3. Joyce, P.B., Joyce, P.B. and Krzyzewski, T.J., Bell, G.R., Joyce, B.A., and Jones, T.S., Phys. Rev. B 58, R15981 (1998).Google Scholar
4. Strassburg, M., Kutzer, V., Pohl, U. W., Hoffmann, A., Broser, I., Ledentsov, N. N., Bimberg, D., Rosenauer, A., Fischer, U., Gerthsen, D., I. Krestnikov, L., Maximov, M. V., Kop'ev, P. S., and Alferov, Zh.I., Appl. Phys. Lett. 72, 942 (1998).Google Scholar
5. Walter, T. Cullis, A.G., Norris, D.J., and Hopkinson, M., Phys. Rev. Lett. 86, 2381 (2001).Google Scholar
6. Möck, P., Topuria, T., Browning, N.D., Dobrowolska, M., Lee, S., Furdyna, J.K., Booker, G.R., Mason, N.J., and Nicholas, R.J., Appl. Phys. Lett. 79, 946 (2001).Google Scholar
7. Möck, P., Topuria, T., Browning, N.D., Titova, L., Dobrowolska, M., Lee, S. and Furdyna, J.K., J. Electron. Mater. 30, 748 (2001).Google Scholar
8. Möck, P., Topuria, T., Browning, N.D., Booker, G.R., Mason, N.J., Nicholas, R.J., Titova, L.V., Dobrowolska, M., Lee, S. and Furdyna, J.K., Mater. Res. Soc. Symp. 640, P6.3.1 (2000).Google Scholar
9. Topuria, T., Möck, P., Browning, N.D., Titova, L.V., Dobrowolska, M., Lee, S. and Furdyna, J.K., Mater. Res. Soc. Symp. 640, P8.3.1 (2000).Google Scholar
10. Marzari, N., Gironcoli, S. de, and Baroni, S., Phys. Rev. Lett. 72, 4001 (1994).Google Scholar
11. Lanks, D.B., Wei, S–H., and Zunger, A., Phys. Rev. Lett. 69, 3766 (1992).Google Scholar
12. Zunger, A. and Mahajan, S., “Atomic ordering and phase separation in epitaxial III-V alloys”, in Handbook on Semiconductors (Elsevier Science B.V., 1994), Ed. Moss, T.S., Vol. 3, Volume Ed. Mahajan, S., pp. 14471514.Google Scholar
13. Liu, H-Y., Xu, B., Wei, Y-Q, Ding, D., Qian, J-J., Han, Q., Liang, J-B, and Wang, Z-G., Appl. Phys. Lett. 79, 2869 (2001).Google Scholar
14. Bragg, W.L. and Williams, E.J., Proc. Roy. Soc. (London) A 145, 699 (1934).Google Scholar
15. Bethe, H.A., Proc. Roy. Soc. (London) A150, 552 (1935).Google Scholar
16. Girifalco, L.A. and Welch, D.O., “Point Defects and Diffusion in Strained metals”, (Gordon and Breach, 1967).Google Scholar
17. Madelung, O., ed. “Semiconductors Group IV Elements and III-V Compounds, Data in Science and Technology” (Springer, 1991)Google Scholar
18. Internet based semiconductor data base at http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InP/thermal.html. At the date this paper was written, this URL was deemed to be useful as source of data. Neither the author nor the Materials Research Society warrants or assures liability for the content or availably of this URL.Google Scholar
19. Cottrell, A.H., “Theoretical Structural Metallurgy”, (Edward Arnold Publ. 1965).Google Scholar
20. Seifert, W., chapter 14 in ref. [1], pp. 139181.Google Scholar
21. Möck, P., Booker, G.R., Mason, N.J., Alphandéry, E., and Nicholas, R.J., IEE Proc.-Optoelectron. 147, 209 (2000), and unpublished material.Google Scholar
22. Alphandéry, E., Nicholas, R.J., Mason, N.J., Möck, P., and Booker, G.R., Appl. Phys. Lett. 74, 2041 (1999).Google Scholar
23. Kim, C.S., Kim, M., Lee, S., Furdyna, J.K., Dobrowolska, M., Rho, H., Smith, L.M., Jackson, H.E., James, E.M., Xin, Y. and Browning, N.D., Phys. Rev. Lett. 85, 1124 (2000).Google Scholar