Skip to main content Accessibility help

Atomic Scale Simulation of Cross Slip and Screw Dislocation Dipole Annihilation

  • Torben Rasmussen (a1)


Atomistic simulations are used to study cross slip of a single screw dislocation as well as screw dislocation dipole annihilation in Cu. A configuration space path techniquex is applied to determine, without presumptions about the saddle point, the minimum energy path of transition for cross slip. The cross slip process is that proposed by Friedel and Escaig, and the energy of the in-plane constriction initiating cross slip is determined. A minimum stable dipole height much smaller than previously inferred from experimental studies is found. Relaxed screw dislocation dipoles adopt a skew configuration due to the anisotropy of Cu. The path technique is applied to investigate annihilation of stable screw dislocation dipoles, and the energy barrier for annihilation as a function of dipole height is determined for both homogeneous and heterogeneous cross slip leading to the annihilation. The results might be used as quantitative input into meso-/macro-scopical modelling approaches which rely on parameters deduced from either simulation or experiment.



Hide All
[1] Carstensen, J. V., Leffers, T., Lorentzen, T., 0. Pedersen, B., Sorensen, B. F., and Winther, G., editors, Modelling of Stucture and Mechanics of Materials from Microscale to Product. Rise National Laboratory, Roskilde, Denmark (1998).
[2] Devincre, B. and Kubin, L. P., Materials Science and Engineering A 234, 8 (1997), and references therein.
[3] Rhee, M., Zbib, H. M., Hirth, J. P., Huang, H., and Rubia, T. de la, Modelling Simul. Mat. Sci. Eng. 6, 467 (1998).
[4] Rodney, D. and Phillips, R., Structure and Strength of Dislocation Junctions: An Atomic Level Analysis, (1998), submitted.
[5] Duesbery, M. S. and Xu, W., Scripta Mat. 39, 283 (1998).
[6] Pedersen, O. B., Philosophical Magazine A 73, 829 (1996).
[7] Friedel, J., In Dislocations and Mechanical Properties of Crystals, eds. Fisher, J. C. et al., John Wiley & Sons (1957).
[8] Escaig, B., In Dislocation Dynamics, eds. Rosenfeld, A. R., Hahn, G. T., Bement, A. L. Jr, and Jaffee, R. I., pages 655677, McGraw-Hill Series in Materials-Science and Engineering (1968); Jour. de Phys. (France) 29, 255 (1968).
[9] Fleischer, R. L., Acta Metallurgica 7, 134 (1959).
[10] Marcinkowski, M. J., Sadananda, K., and Olson, N. J., Cryst. Latt. Def. 5, 187 (1974).
[11] Clarebrough, L. M. and Forwood, C. T., Phys. Stat. Sol. A 32, K15 (1975).
[12] Rasmussen, T., Jacobsen, K. W., Leffers, T., and Pedersen, O. B., Physical Review B 56, 2977 (1997).
[13] Rasmussen, T., Jacobsen, K. W., Leffers, T., Pedersen, O. B., Srinivasan, S. G., and Jónsson, H., Physical Review Letters 79, 3676 (1997).
[14] Saada, G., Materials Science and Engineering A 137, 177 (1991).
[15] Duesbery, M. S., Louat, N. P., and Sadananda, K., Acta metall. mater. 40, 149 (1992).
[16] Püschl, W. and Schoeck, G., Mat. Sci. and Eng. A 164, 28 (1993).
[17] Stroh, A. N., Proc. Phys. Soc. B 67, 427 (1954).
[18] Püschl, W., Phys. Stat. Sol. (B) 162, 363 (1990).
[19] Mills, G., Jónsson, H., and Schenter, G., Surface Science 324, 305 (1995).
[20] Jónsson, H., Mills, G., and Jacobsen, K. W., In Classical and Quantum Dynamics in Condensed Phase Simulations, eds. Berne, B. J., Ciccotti, G., and Coker, D. F., World Scientific (1998).
[21] Jacobsen, K. W., Norskov, J. K., and Puska, M. J., Physical Review B 35, 7423 (1987).
[22] Jacobsen, K. W., Stoltze, P., and Ncrskov, J. K., Surface Science 366, 394 (1996).
[23] Rosengaard, N. M. and Skriver, H. L., Physical Review B 47, 12865 (1992).
[24] Stoltze, P., Simulation methods in atomic-scale materials physics, Polyteknisk Forlag, Lyngby (1997).
[25] Faken, D. and Jónsson, H., Computational Materials Science 2, 279 (1994).
[26] Rasmussen, T., Atomic Scale Simulation of Dislocation Reactions, PhD thesis, Technical University of Denmark (1998).
[27] Essmann, U. and Mughrabi, H., Philosophical Magazine A 40, 731 (1979).
[28] Morton, A. J. and Forwood, C. T., Cryst. Latt. Def. 4, 165 (1973).
[29] Forwood, C. T. and Humble, P., Aust. J. Phys. 23, 697 (1970).
[30] Rasmussen, T., Jacobsen, K. W., Leffers, T., Pedersen, O. B., and Vegge, T., Simulation of structure and annihilation of screw dislocation dipoles, (1999), to be submitted.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed