Skip to main content Accessibility help
×
Home

Atomic Scale Engineering of Superlattices and Magnetic Wires

  • J. Camarero (a1), J. de la Figuera (a1), L. Spendeler (a1), X. Torrellas (a2), J. Alvarez (a2), S. Ferrer (a2), J.J. de Miguel (a1), J.M. García (a1), O. Sáinchez (a1), J.E. Ortega (a1), A.L. Vázquez and R. Miranda (a1)...

Extract

In the past years artificially-structured materials have been grown with an increasing degree of sophistication due to steady progress in our ability to control growth processes down to the atomic level. These materials have yielded new physical properties due to the confinement of electrons in less than three dimensions. Thus, the confinement of electrons in two-dimensional (2D) metallic superlattices has resulted in oscillatory magnetic coupling with an associated oscillatory giant magnetoresistance (GMR). New properties are expected when the electrons are further confined to one dimension (1D) of free motion in the structures known as quantum wires. In this report we briefly describe two recent examples of atomic-scale engineering of materials. In the first case a surfactant is used to purposely modify the structure of magnetic/non magnetic superlattices. The second example illustrates a further reduction in dimensionality obtained by modifying the substrate onto which the growth takes place: the fabrication of 1D magnetic quantum wires on vicinal surfaces.

Copyright

References

Hide All
[1] , L. González et al. , Phys. Rev. B 24, 3245 (1981).
[2] Cerdi, J. R. et al. , J. Phys: Condensed Matter 5, 2055 (1993).
[3] Cebollada, A. et al. , Phys. Rev. B 39, 9726 (1989).
[4] Miguel, J. J. de et al. J. Magn. Magn. Mat. 93, 1 (1991).
[5] Qiu, Z. et al. ., Phys. Rev. B 46, 8659 (1992).
[6] Johnson, M. T. et al. , Phys. Rev. Lett. 68, 2688 (1992).
[7] Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).
[8] Mosca, D. H. et al. , J. Magn. Magn. Mat. 94, LI (1991).
[9] Johnson, M. T. et al. , Phys. Rev. Lett. 69, 969 (1992).
[10] Harp, G. R. et al. , Phys. Rev. B 47, 8721 (1993).
[11] Kief, M. T. and Egelhoff, J. W. F., Phys. Rev. B 47, 10785 (1993).
[12] Schreyer, A. et al. , Phys. Rev. B 47, 15334 (1993).
[13] Figuera, J. de la, Prieto, J.E., Ocal, C. and Miranda, R., Phys. Rev. B 47, 13043 (1993).
[14] Figuera, J. de la et al. (unpublished).
[15] Camarero, J. et al. , Phys. Rev. Lett. 73, 2448 (1994).
[16] Whitney, T. M. et al. , Science 261, 1316 (1993).
[17] Piraux, L. et al. , Appl. Phys. Lett. 65, 2484 (1995).
[18] Blondel, A. et al. , Appl. Phys. Lett. 65, 3019 (1995).
[19] Figuera, J. de la et al. , Appl. Phys. Lett. 66, 1006 (1995).
[20] Poensgen, M. et al. , Surf. Sci. 274, 430 (1992).
[21] Elmers, H. J. et al. , Phys. Rev. Lett. 73, 898 (1994).
[22] Schneider, C. M. et al. , Phys. Rev. Lett. 64, 1059 (1990).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed