Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-16T10:45:30.830Z Has data issue: false hasContentIssue false

Atomic Ordering in Self-assembled Epitaxial II-VI and IV-VI Compound Semiconductor Quantum Dot Systems

Published online by Cambridge University Press:  11 February 2011

Peter Möck
Affiliation:
Portland State University, Department of Physics, P.O.Box 751, Portland, OR 97207–0751, pmoeck@pdx.edu
Klaus Pierz
Affiliation:
Physikalisch-Technische Bundesanstalt Braunschweig, Bundesallee 100, 38116 Braunschweig, Federal, Republic of Germany
Teya Topuria
Affiliation:
University of Illinois at Chicago, Department of Physics, 845 W.Taylor Street, Chicago, Illinois 60607–7059
Nigel D. Browning
Affiliation:
University of Illinois at Chicago, Department of Physics, 845 W.Taylor Street, Chicago, Illinois 60607–7059
Huizhen Wu
Affiliation:
University of Oklahoma, School of Electrical and Computer Engineering, Norman, OK 73019
Patrick J. McCann
Affiliation:
University of Oklahoma, School of Electrical and Computer Engineering, Norman, OK 73019
Get access

Abstract

Transmission electron microcopy (TEM) in both the parallel illumination and scanning probe mode revealed atomically ordered entities within a 5 to 250 nm range in a IV-VI and a II-VI compound semiconductor quantum dot (QD) system. While the II-VI system was a nominal [001] CdSe/(Mn0.1Zn0.9)Se multilayer structure with the QDs embedded, the IV-VI system nominally consisted of [111] PbSe islands. The comparison of photoluminescence (PL) spectra from the CdSe/(Mn0.1Zn0.9)Se structure with those of a reference structure, that was grown to the same nominal specification under otherwise identical conditions except that no Mn was incorporated into the cladding layers, revealed for the former sample two peaks at approximately 2 and 2.1 eV. We tentatively attribute these two PL peaks to two groups of atomically ordered entities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zunger, A. and Mahajan, S., Atomic ordering and phase separation in epitaxial III-V alloys, in Handbook on Semiconductors (Elsevier Science B.V., 1994), Ed. Moss, T.S., Vol. 3, Volume Ed. S. Mahajan, p. 1447.Google Scholar
2. Zhang, X. B. and Hark, S. K., J. Cryst. Growth 223, 512 (2001).Google Scholar
3. Möck, P., Lei, Y., Topuria, T., Browning, N. D., Ragan, R., Min, K. S., and Atwater, H. A., Physical Chemistry of Interfaces and Nanomaterials, Zhang, Jin Z., Wang, Zhong L., Eds., Proc. of SPIE, Vol. 4807, 71 (2002).Google Scholar
4. Möck, P., Topuria, T., Browning, N. D., Nicholas, R. J., and Booker, G. R., Mat. Res. Soc. Symp. Proc. 696, N8.8.1 (2002).Google Scholar
5. Möck, P., Topuria, T., Browning, N. D., Dobrowolska, M., Lee, S., Furdyna, J. K., Booker, G. R., Mason, N. J., and Nicholas, R. J., Appl. Phys. Lett. 79, 946 (2001).Google Scholar
6. Möck, P., Topuria, T., Browning, N. D., Titova, L., Dobrowolska, M., Lee, S., and Furdyna, J. K., J. Electron Mater. 30, 748 (2001).Google Scholar
7. Möck, P., Topuria, T., Browning, N. D., Booker, G. R., Mason, N. J., Nicholas, R. J., Titova, L. V., Dobrowolska, M., Lee, S., and Furdyna, J. K., Mater. Res. Soc. Symp. 642, J6.3.1 (2001).Google Scholar
8. Park, K., Salamanca-Riba, L., and Jonker, B. T., Appl. Phys. Lett. 61, 2302 (1992).Google Scholar
9. Cohen, K., Stolyarova, S., Amir, N., Chack, A., Beserman, R., Weil, R., and Nemirovsky, Y., J. Cryst. Growth 198/199, 1174(1999).Google Scholar
10. Lee, H. S., Lee, J. Y., Kim, T. W., and Park, H. L., J. Cryst. Growth 233, 749 (2001).Google Scholar
11. Kwonand, M. S. Lee, J. Y., J. Cryst. Growth 191, 51 (1998).Google Scholar
12. Lee, H. S., Lee, J. Y., Kim, T. W., Lee, D. U., Choo, D. C, and Kim, M. D., J. Appl. Phys. 91, 5657 (2002).Google Scholar
13. Salamanca-Young, L., Partin, D. L., and Heremans, J., J. Appl. Phys. 63, 1504 (1988).Google Scholar
14. Walter, T., Cullis, A. G., Norris, D. J., and Hopkinson, M., Phys. Rev. Lett. 86, 2381 (2001).Google Scholar
15. Cullis, A. G., Norris, D. J., Walter, T., Migliorato, M. A., and Hopkinson, M., Phys. Rev. B66, 081305–1 (2002).Google Scholar
16. Håkanson, U., Sass, T., Johansson, M. K-J., Pistol, M. E., and Samuelson, L., Phys. Rev. B66, 235308–1 (2002).Google Scholar
17. James, E. M. and Browning, N. D., Ultramicroscopy 78, 125 (1999).Google Scholar
18. Wei, S-H. and Zunger, A., Phys. Rev. B 39, 3279 (1989).Google Scholar
19. Krestnikov, I. L., Straβburg, M., Caesar, M., Hoffmann, A., Pohl, U. W., Bimberg, D., Ledentsov, N. N., Kop'ev, P. S., Zh.I., Alferov, Litvinov, D., Rosenauer, A., and Gerthsen, D., Phys. Rev. B 60, 8695 (1999).Google Scholar
20. The Lund University group [16] offers a different qualitative explanation for long range ordered microstructures in a III-V QD system. It is not clear if their samples were analyzed immediately after the growth. At least some of their samples were, however, baked at 120 °C for 12 hours before the analyses. This might have converted growth induced short range order into the observed long range ordered microstructures.Google Scholar
21. Kim, C. S., Kim, M., Furdyna, J. K., Dobrowolska, M., Lee, S., Rho, H., Smith, L. M., Jackson, H. E., James, E. M., Xin, Y., and Browning, N. D., Phys. Rev. Lett. 85, 1124 (2000).Google Scholar
22. The fact that we observe neither (essentially) 2D remains of the nominally deposited 0.3 ML CdSe sheets nor 3D quantum dots with sphalerite structure in our HRTEM and Z-STEM investigations may be explained by averaging effects due to the [001] and <110> projections in the former case and a small density in the latter case.+projections+in+the+former+case+and+a+small+density+in+the+latter+case.>Google Scholar
23. Kim, C. S., Kim, M., Lee, S., Kossut, J., Furdyna, J. K., and Dobrowolska, M., J. Cryst. Growth 214/215, 395 (2000).Google Scholar
24. Bacher, G., Schömig, H., Welsch, M. K., Zaitsev, S., Kulakovskii, V. D., Forchel, A., Lee, S., Dobrowolska, M., Furdyna, J. K., König, B., and Ossau, W., Appl. Phys. Lett. 79, 524 (2001).Google Scholar
25. Titova, L. V., Furdyna, J. K., Dobrowolska, M., Lee, S., Topuria, T., Moeck, P., and Browning, N. D., Appl. Phys. Lett. 80, 1237 (2002).Google Scholar
26. Chinyama, K. G., Bradley, I. V., O'Donnell, K. P., Kuznetsov, P. I., Chernushich, A. P., and Luzanov, V., J. Cryst. Growth 184/185, 298 (1998).Google Scholar