Skip to main content Accessibility help

Atomic Ordering, Electronic Structure, and Transport Properties of LAST-m Systems

  • S. D. Mahanti (a1), Khang Hoang (a2) and Salameh Ahmad (a3)


In recent years, LAST-m (AgPb m SbTe m+2) and related materials have emerged as potential high performance high temperature thermoelectrics. These compounds are obtained by starting from PbTe, and replacing pairs of Pb2+ ions by (Ag1+, Sb3+) pairs. One example is LAST-18. When optimally doped, this compound has thermoelectric figure of merit ZT=1.7 at 700K. This large ZT is most likely due to very low lattice thermal conductivity, caused by phonon scattering from nanostructures. These nanostructures involve clustering and ordering of Ag, Sb, and Pb ions. Possible origins of this atomic ordering and how the presence of nanostructures affects the electronic structure near the band gap region are discussed. The temperature (T) dependence of electrical conductivity σ (∼T 2.2 in the range 300K <T< 900K) in n-type PbTe is analyzed in terms of the T-dependence of different physical quantities contributing to transport. We find that the dominant contribution comes from the explicit T-dependence of relaxation time rather than its energy dependence. The T-dependence of chemical potential is also significant in the concentration range of interest. Electronic thermal conductivity for constant field (κel,E) and for constant current (κel,J) are found to differ considerably at high temperatures and the Weidemann-Franz (WF) law κel,J = L oσT, where L o =2x10−8WΩ/K is the Lorentz number, overstimates κel,J by nearly 60% at 800K for carrier concentration n=5x1019/cm3. As a result, one tends to underestimate the lattice contribution κlatt = κexp - κel,J. We give theoretical values of effective Lorentz number L = κel.J/σT for different n and T.



Hide All
1. Uher, C., Chemistry, Physics, and Materials Science of Thermoelectric Materials: Beyond Bismuth Telluride“, Edited by Kanatzidis, M. G., Mahanti, S. D., and Hogan, T. P., Kluwer Academic/Plenum Publishers, New York (2003), p. 121.
2. Harman, T. C. et al. , Science 297, 2229 (2002).
3. Hsu, K. F. et al. , Science 303, 818 (2004).
4. Takahata, K. and Terasaki, I., Jpn. J. Appl. Phys. 41, 763 (2002).
5. Ziman, J. M., Principles of The Theory of Solids (Camb. Univer Press, NY 1964), p 179.
6. Hoang, K., Desai, K., and Mahanti, S. D., Phys. Rev. B 72, 064102 (2005).
7. Quarez, E. et al. , J. Am. Chem. Soc. 127, 9177 (2005); P. F. P. Poudeu et al., Angew. Chem. Int. Ed. 45, 3835 (2006).
8. Hoang, K., Atomic and Electronic Structures of Novel Ternary and Quaternary Narrow Band-Gap Semiconductors, Ph. D. Thesis, Michigan State University (2007).
9. Hoang, K. et al. , Phys. Rev. Letters 99, 156403 (2007).
10. Bilc, D. et al. , Phys. Rev. Letters 93, 146403 (2004).
11. Hazama, H., Mizutani, U., and Asahi, R., Phys. Rev. B 73, 115108 (2006).
12. Volkov, B. A., Ryabova, L. I., and Khokhlov, D. R., Phys.-Usp. 45, 819 (2002).
13. Ahmad, S., Hoang, K., and Mahanti, S. D., Phys. Rev. Lett. 96, 056403 (2006); 96, 169907(E)(2006).
14. Ahmad, S. et al. , Phys. Rev. B 74, 155205 (2006).
15. Mahan, G. D. and Sofo, J. O., Proc. Natl. Acad. Sci. U. S. A. 93, 7436 (1996).
16. Han, M.-K. et al. , (to be submitted to Chemistry of Materials).
17. Sootman, J. et al. (unpublished).
18. Effimova, B. A. et al. , Soviet Physics – Semiconductors 4, 1653 (1971).
19. Bilc, D., Mahanti, S. D., and Kanatzidis, M. G., Phys. Rev. B 74, 125202 (2006).
20. Ahmad, S., Defect Structure and Transport Properties of Narrow Gap Semiconductor PbTe and Related Ststems, Ph. D. Thesis, Michigan State University (2007); Also see C.M.Bhandari and D. D. M. Rowe, J. Phys. D; Appl. Phys. 18, 873 (1985).
21. Drabble, J. R. and Goldsmid, H. J., International Series of Monographs on Semiconductors: Thermal Conduction in Semiconductors, Vol. 4 (Pergammon Press, 1961).
22. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
23. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).
24. Aulber, W. G., Jonsson, L., and Wilkins, J. W., Solid State Physics 54, 1 (2000).


Atomic Ordering, Electronic Structure, and Transport Properties of LAST-m Systems

  • S. D. Mahanti (a1), Khang Hoang (a2) and Salameh Ahmad (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed