Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-18T10:41:15.587Z Has data issue: false hasContentIssue false

Atiomiic Scale Interface Structure of In0.2Ga0.8As/GaAs Strained Layers Studied by Crosssectional Scanning Tunneijng Microscopy

Published online by Cambridge University Press:  21 February 2011

J. F. Zheng
Affiliation:
Department of Materials Science, University of California at Berkeley, Berkeley, CA 94720 Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
M. B. Salmeron
Affiliation:
Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
E. R. Weber
Affiliation:
Department of Materials Science, University of California at Berkeley, Berkeley, CA 94720 Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

A molecular beam epitaxy-grown In0.2Ga0.8As/GaAs strained layer structure has been studied by scanning tunneling microscopy in cross-section on the (110) cleavage plane perpendicular to [001] the growth direction. Individual Indium atoms were differentially imaged in the group III sublattice, allowing a direct observation of the interface roughness due to the indium compositional fluctuation. In the In0.2Ga0.8As layers, Indium atoms are found in clusters preferentially along the growth direction with each cluster containing 2-3 indium atoms. Indium segregation induced asymmetrical interface broadening is studied on an atomic scale. The interface of In0.2Ga0.8As grown on GaAs is sharp within 2-4 atomic layers. The interface of GaAs grown on In0.2Ga0.8As is found to be broadened to about 5-10 atomic layers. The atomic scale fluctuation due to indium distribution is about 20 Å along the interface in this case. We conclude that clustering and segregation are the main reason for the In0.2Ga0.8As/GaAs interface roughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth. 27, 118 (1974).Google Scholar
2. Gerard, J. M. and Marzin, J. Y., Phys. Rev. B, 45, 6313 (1992).Google Scholar
3. Jojai, B. and Yu, P. W., Phys. Rev. B, 41, 12650 (1990).Google Scholar
4. Devine, R. L. S. and Moore, W. T., J. Appl. Phys. 62, 3999(1987).Google Scholar
5. Kirby, P. B., Constable, J. A., and Smith, R. S., Phys. Rev. B, 40, 3013(1989).Google Scholar
6. Muraki, K., Fukatsu, S., Shiraki, Y. and Ito, R., J. Crystal Growth, 127, 546(1993).CrossRefGoogle Scholar
7. Larive, J. M., Nagle, J., Landesman, J. P., Marcadet, X., Mottet, C. and Bois, P., J. Vac. Sci. Technol. B11, 1413(1993).Google Scholar
8. Moison, J. M., Houzay, F., Barthe, F., Gerard, J. M., Jusserand, B., Massies, J. and Turco-Sandroff, F.S., J. of Crystal Growth, 111, 141(1991).Google Scholar
9. Ourmazd, A., Taylor, D. W., Cumingham, J., Tu, C. W., Phys. Rev. Lett. 62, 933(1989).Google Scholar
10. Warwick, C. A., Jan, W. Y., Ourmazd, A. and Harris, T. D., Appl. Phys. Lett. 56, 2666 (1990).Google Scholar
11. Feenstra, R. M., Stroscio, J.A., Tersoff, J., and Fein, A. P., Phys. Rev. Lett. 58, 1192(1987).Google Scholar
12. Hamers, R. J., J. Vac. Sci. & Technolo. B6, 1462(1988).Google Scholar
13. Zheng, J. F., Liu, X., Weber, E. R., Ogletree, D. F. and Salmeron, M. B., to be published in J. Vac. Sci. Technol.Google Scholar
14. Albrektsen, O. and Salemink, H., J. Vac. Sci. Technol. B9, 779(1991).Google Scholar
15. Salemink, H. and Albrektsen, O., Phys. Rev. B, 47, 16044(1993).Google Scholar
16. Zheng, J. F., Walker, J. D., Ogletree, D. F., Salmeron, M. B. and Weber, E. R., to be published in J. Vac. Sci. Technol.Google Scholar
17. Holonyak, N. Jr., Laidig, W. D., Camras, M.D., Morkoc, H. and Drumond, T. J., Hess, K. and Burroughs, M.S., J. Appl. Phys., 52, 7201(1981).Google Scholar
18. Kim, J., Alwen, J.J., Forbes, D.V., Coleman, J.J., Robertson, I.M., Wayman, C.M., Baumann, F.H., Bode, M., Kim, Y. and Ourmazd, A.. Appl. Phys. Lett. 61, 28(1992).Google Scholar
19. Muraki, K., Fukatsu, S., Shiraki, Y. and Ito, R., Surface Sci., 267, 107(1992).Google Scholar