Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T00:44:27.936Z Has data issue: false hasContentIssue false

The Athermal Strengthening of Discontinuous Reinforced NiAl Composites

Published online by Cambridge University Press:  15 February 2011

L. Wang
Affiliation:
Metallurgical Materials Laboratory, Dept. of Materials & Nuclear Engineering, University of Maryland, College Park, MD 20742-2115
K. Xu
Affiliation:
Metallurgical Materials Laboratory, Dept. of Materials & Nuclear Engineering, University of Maryland, College Park, MD 20742-2115
R. J. Arsenault
Affiliation:
Metallurgical Materials Laboratory, Dept. of Materials & Nuclear Engineering, University of Maryland, College Park, MD 20742-2115
Get access

Abstract

An increase in the athermal component of the yield stress at low temperatures is the caused of the high temperature strengthening of discontinuously reinforced NiAl matrix composites. The reinforcements stabilize the microstructure. The strengthening in the temperature range of 300–1273K, is believed to be related to the grain size refinement and effective pinning of grain boundaries. This conclusion was obtained from analysis of data from AlN, TiB2 and Al2O3/NiAl particulate composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Whittenberger, J.D., Ray, R., Jha, S.C., and Draper, S., Mater. Sci. Eng., A138, 83(1991).Google Scholar
2. Whittenberger, J.D., Ray, R., Jha, S.C, and Draper, S., Mater. Sci. Eng., A151, 137(1992).Google Scholar
3. Whittenberger, J.D., Arzt, Eduart, and Luton, M.J., J. Mater. Res., 5, 271(1990).Google Scholar
4. Whittenberger, J.D., Arzt, Eduart, and Luton, M.J., J. Mater. Res., 5, 2819(1990).Google Scholar
5. Viswanadham, R. K., Mannan, S. K., and Sprissler, B., Annual Report of Martin Marietta Lab., MML TR 87–66C, 1987.Google Scholar
6. Sharvan Kumar, K., and Mannan, S. K., Progress Report of Martin Marietta Lab., MML TR 87–66C, 1988.Google Scholar
7. Whittenberger, J. D., Viswanadham, R. K., Mannan, S. K., and Kumar, K. S., J. Mater. Sci. 25, 35(1990).Google Scholar
8. Whittenberger, J.D., J. Mater. Sci., 23, 235(1988).Google Scholar
9. Wang, L. and Arsenault, R.J., Mater. Sci. Eng., A127, 91(1990).Google Scholar
10. Wang, L. and Arsenault, R. J., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D.B. and McMeeking, P., (MRS Proc. 194, 1990) p. 199.Google Scholar
11. Wang, L. and Arsenault, R. J., in High-Temperature Ordered Intermetallic Alloys IV, MRS Proc. (Eds. Johnson, L.A., Dope, D.P., and Stiegler, J.O.), (MRS Proc. 213, 1991) p. 1063.Google Scholar
12. Wang, L. and Arsenault, R. J., Mater. Sci. and Eng., A127, 91(1990).Google Scholar