Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T09:12:45.162Z Has data issue: false hasContentIssue false

Assembly of carbon nanotube devices by tip-induced optical trapping

Published online by Cambridge University Press:  23 June 2011

W. Xiong
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln,Lincoln, NE 68588-0511.
Y.S. Zhou
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln,Lincoln, NE 68588-0511.
M. Mitchell
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln,Lincoln, NE 68588-0511.
J.B. Park
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln,Lincoln, NE 68588-0511.
M. M. Samani
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln,Lincoln, NE 68588-0511.
Y. Gao
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln,Lincoln, NE 68588-0511.
Y.F. Lu
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln,Lincoln, NE 68588-0511.
Get access

Abstract

Fabrication of nanoscale devices by assembling individual carbon nanotubes (CNTs) remains challenging despite enormous effort made in this field. Fulfilling the promise of CNTs requires more efficient assembly techniques. In this study, we have developed an in-situ assembly method for precise and cost-effective integration of CNTs using a laser-assisted chemical vapor deposition (LCVD) process. Results show that CNTs can be trapped between sharp tip-shaped electrodes due to the optical gradient forces around the tip apexes generated by a CO2 laser irradiation. This method enables the precise assembly of CNT-based field-effect transistors (FETs) and paves the way for the successful implementation of the CNT-based nanoelectronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, Z. H., Appenzeller, J., Lin, Y. M., Sippel-Oakley, J., Rinzler, A. G., Tang, J. Y., Wind, S. J., Solomon, P. M., and Avouris, P., Science 311, 1735–1735 (2006).Google Scholar
2. Maeng, S., Moon, S., Kim, S., Lee, H. Y., Park, S. J., Kwak, J. H., Park, K. H., Park, J., Choi, Y., Udrea, F., Milne, W. I., Lee, B. Y., Lee, M., and Hong, S., Appl. Phys. Lett. 93, 113111 (2008).Google Scholar
3. Nam, J. G., Park, Y. J., Kim, B. S., and Lee, J. S., Scripta. Mater. 62, 148–150 (2010).Google Scholar
4. Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T. A., and McEuen, P. L., Nature 431, 284–287 (2004).Google Scholar
5. Lefebvre, J., Lynch, J. F., Llaguno, M., Radosavljevic, M., and Johnson, A. T., Appl. Phys. Lett. 75, 3014–3016 (1999).Google Scholar
6. Zhang, Y. G., Chang, A. L., Cao, J., Wang, Q., Kim, W., Li, Y. M., Morris, N., Yenilmez, E., Kong, J., and Dai, H. J., Appl. Phys. Lett. 79, 3155–3157 (2001).Google Scholar
7. Keren, K., Berman, R. S., Buchstab, E., Sivan, U., and Braun, E., Science 302, 1380–1382 (2003).Google Scholar
8. Krupke, R., Hennrich, F., Kappes, M. M., and Lohneysen, H. V., Nano Lett. 4, 1395–1399 (2004).Google Scholar
9. Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., and Krupke, R., Nano Lett. 7, 1556–1560 (2007).Google Scholar
10. Novotny, L., Bian, R. X., and Xie, X. S., Phys. Rev. Lett. 79, 645–648 (1997).Google Scholar
11. Shi, J., Lu, Y. F., Yi, K. J., Lin, Y. S., Liou, S. H., Hou, J. B., and Wang, X. W., Appl. Phys. Lett. 89, 083105 (2006).Google Scholar
12. Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A., Ducati, C., Ferrari, A. C., Blackburn, A. M., Wang, K. Y., and Robertson, J., Nano Lett. 6, 1107–12 (2006)Google Scholar
13. Jang, T. K., Ahn, J. H., Lee, Y. H., and Ju, B. K., Chem. Phys. Lett. 372, 745–749 (2003).Google Scholar
14. Xiong, W., Zhou, Y. S., Mahjouri-Samani, M., Yang, W. Q., Yi, K. J., He, X. N., Liou, S. H., and Lu, Y. F., Nanotechnology 20, 025601 (2009).Google Scholar
15. Zhou, Y. S., Xiong, W., Gao, Y., Mahjouri-Samani, M., Mitchell, M., Jiang, L., and Lu, Y. F., Nanotechnology 21, 315601 (2010).Google Scholar
16. Yao, Y. G., Li, Q. W., Zhang, J., Liu, R., Jiao, L. Y., Zhu, Y. T., and Liu, Z. F., Nature Materials 6, 283–6 (2007).Google Scholar
17. Dresselhaus, M. S., Dresselhaus, G., Saito, R., and Jorio, A., Physics Reports-Review Section of Physics Letters 409, 47–99 (2005).Google Scholar