Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T16:03:14.867Z Has data issue: false hasContentIssue false

Arsenic Deactivation in Silicon

Published online by Cambridge University Press:  10 February 2011

M. A. Berding
Affiliation:
Applied Physical Sciences Laboratory, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, marcy@plato.sri.com
A. Sher
Affiliation:
Applied Physical Sciences Laboratory, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, marcy@plato.sri.com
Get access

Abstract

In this paper we examine the properties of arsenic in silicon, using ab initio calculations and a statistical theory. Good agreement is found between theory and experiment for the electronic concentration as a function of temperature and total arsenic concentration. We show that for low arsenic concentrations, full activation is the equilibrium condition. In equilibrium, the neutral complex composed of a lattice vacancy surrounded by four arsenic (VAs4) is the dominant means by which high concentrations of arsenic are rendered inactive. Under constrained equilibrium conditions in which VAs4 cluster formation is prohibited, we show that VAs3Si1 cluster populations increase dramatically and can account for nearly the same degree of compensation as the VAs4 clusters. Even VAs2 clusters alone can account for substantial deactivation in the absence of VAs3 and VAs4 clusters. These smaller complexes are essential not only to the establishment of equilibrium, since SiAs4 clusters are extremely rare, but can also explain some degree of deactivation, even if the formation of VAs4 clusters are kinetically inhibited.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luning, S., Rousseau, R.M., Griffin, R.B., Carey, R.G. and Plummer, J.D., Tech. Dig. of the International Elec. Dev. Meet., p. 457 (1992).Google Scholar
2. Subrahmanyan, R., Orlowski, M. and Huffman, G., J. Appl. Phys. 71, p. 164 (1992).Google Scholar
3. Bauer, H., Pichler, P. and Ryssel, H., IEEE Trans, on Semi. Manu. 8, p. 414 (1995);Google Scholar
Bauer, H., Pichler, P. and Ryssel, H., Proc. 24th Euro. Solid State Dev. Res. Conf., p. 93 (1994);Google Scholar
Parisini, A., Bourret, A., Armigliato, A., Servidori, M., Solmi, S., Fabbri, R., Regnard, J.R. and Alain, J.L., J. Appl. Phys. 67, p. 2320 (1990).Google Scholar
4. Pandey, K.C., Erbil, A., Cargill, G.S., Boehme, R.F. and Vanderbilt, D., Phys. Rev. Lett. 61, p. 1282 (1988).Google Scholar
5. Allain, J.L., Regnard, J. R., Bourret, A., Parisini, A., Armigliato, A., Tourillon, G. and Pizzini, S., Phys. Rev. B 46, p. 9434 (1992);Google Scholar
Erbil, A., Cargill, G.S. III and Boehme, R.F., Mat. Res. Soc. 41, p. 275 (1985);Google Scholar
Erbil, A., Weber, W., Cargill, G.S. III and Boehme, R.F., Phys. Rev. B 34, p. 1392 (1986).Google Scholar
6. Rousseau, P.M., Griffin, P.B. and Plummer, J.D., Appl. Phys. Lett. 65, p. 578 (1994).Google Scholar
7. Lawther, D.W., Myler, U., Simpson, P.J., Rousseau, P.M., Griffin, P.B. and Plummer, J.D., Appl. Phys. Lett. 67, p. 3575 (1995).Google Scholar
8. Myler, U., Simpson, P.J., Lawther, D.W. and Rousseau, P.M., J. Vac. Sci. Tech. B 15, p. 757 (1997).Google Scholar
9. Wiehert, Th. and Swanson, M.L., J. Appl. Phys. 66, p. 3026 (1989).Google Scholar
10. Ramamoorthy, M. and Pantelides, S.T., Phys. Rev. Lett. 76, p. 4753 (1996).Google Scholar
11. Rousseau, P.M., Griffin, P.B., Carey, P.G. and Plummer, J.D., in Process Physics and Modeling in Semiconductor Technology, Electrochemical Society Proceedings, edited by Srinivasan, G. R., Taniguchi, K., and Murthy, C. S., vol. 93, p. 130 (The Electrochemical Society, Pennington NJ, 1993).Google Scholar
12. Nobili, D., Solmi, S., Parisini, A., Derdour, M., Armigliato, A. and Moro, L., J. Electrochem. Soc. 130, p. 922 (1983).Google Scholar
13. Angelucci, R., Celotti, G., Nobili, D. and Solmi, S., J. Electrochem. Soc 132, p. 2727 (1985);Google Scholar
Armigliato, A., Nobili, D., Solmi, S., Bourret, A. and Werner, P., J. Electrochem. Soc. 133, p. 2560 (1986).Google Scholar
14. Sher, A., van Schilfgaarde, M., Chen, A.-B. and Chen, W., Phys. Rev. B 36, p. 4279 (1987).Google Scholar
15. Berding, M. A., Sher, A., van Schilfgaarde, M., Rousseau, P. M., and Spicer, W. E., Appl. Phys. Lett. 72, 1492 (1998);Google Scholar
Berding, M.A. and Sher, A., (submitted to Phys. Rev. B).Google Scholar
16. Heavily doped regions are often produced by ion implantation and a laser-melt anneal after which the arsenic is nearly fully activated. SIMS measurements indicate that the arsenic stays in the lattice during subsequent processing (which we are attempting to model) in which the deactivation takes place.Google Scholar
17. Andersen, O.K., Jepsen, O. and Glotzel, D., Highlights of Condensed Matter Theory, edited by Bassani, F. et al. (Amsterdam, The Netherlands: North Holland, 1985), p. 59.;Google Scholar
Methfessel, M. and van Schilfgaarde, M., 1996 (unpublished).Google Scholar
18. von Barth, U. and Hedin, L., J. Phys. C5, p. 1629 (1972).Google Scholar
19. Landolt-Bornstein, , Vol. 17a.Google Scholar
20. Lietoila, A., Gibbons, J.F. and Sigmon, T.W., Appl. Phys. Lett. 36, p. 765 (1980).Google Scholar