Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-19T19:49:28.688Z Has data issue: false hasContentIssue false

Approaches to modifying solid phase crystallization kinetics for a-Si films

Published online by Cambridge University Press:  10 February 2011

Reece Kingi
Affiliation:
Electronic Materials and Processing Research Laboratory, The Pennsylvania State University, University Park, PAl 6802
Yaozu Wang
Affiliation:
Electronic Materials and Processing Research Laboratory, The Pennsylvania State University, University Park, PAl 6802
Stephen Fonash
Affiliation:
Electronic Materials and Processing Research Laboratory, The Pennsylvania State University, University Park, PAl 6802
Osama Awadelkarim
Affiliation:
Electronic Materials and Processing Research Laboratory, The Pennsylvania State University, University Park, PAl 6802
Yuan-Mn Li
Affiliation:
Electronic Materials and Processing Research Laboratory, The Pennsylvania State University, University Park, PAl 6802
Get access

Abstract

Three approaches to modifying the solid phase crystallization kinetics of amorphous silicon thin films are examined with the goal of reducing the thermal budget and improving the poly-Si quality for thin film transistor applications. The three approaches consist of (1) variations in the PECVD a-Si deposition parameters; (2) the application of pre-fumace-anneal surface treatments; and (3) using both rapid thermal annealing and furnace annealing at different temperatures. We also examine the synergism among these approaches.

Results reveal that (1) film deposition dilution and dilution/temperature changes do not strongly affect crystallization time, but do affect grain size; (2) pre-anneal surface treatments can dramatically reduce the solid phase crystallization thermal budget for diluted films and act synergistically with deposition dilution or dilution/temperature effects; and (3) rapid thermal annealing leads to different crystallization kinetics from that seen for furnace annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, I-Wei, Solid State Phenomena Vols 37–38 (1994) pp. 553564 Google Scholar
2 Nakazawa, K. and Tanaka, K., J. Appl. Phys. 68 (3) 1990 (1029)Google Scholar
3 Kretz, T., Stroh, R., Leganeux, P., Huet, O., Magis, M. and Pribat, D., Solid State Phenomena Vols 37–38 (1994) pp. 311316 Google Scholar
4 Guillemet, J., Pieraggi, B., de Mauduit, B. and Claverie, A., Solid State Phenomena, Vols 37–38 (1994) pp. 293298 Google Scholar
5 Ditizio, R. A., Liu, G., Fonash, S., Hseih, B. and Greve, D., Appl. Phys. Lett. 56 (12) 1990 (1140)Google Scholar
6 Yin, A., Fonash, S., Reber, D., Li, T. and Bennett, M., MRS Symposium Proceedings 345, 1994, pp. 8186 Google Scholar
7 Kammins, T., Polycrystalline Silicon for IC Applications, (Klumer Academic Publishers, 1998)Google Scholar
8 Wu, I., Chiang, A., Ovecoglu, M. and Huang, T., J. Appl. Phys. 65 (10) 1989 (4036)Google Scholar
9 Nag, S., PhD Thesis, The Pennsylvania State University, 1992 Google Scholar
10 Kawazu, Y., Kudo, H., Onari, S. and Arai, T., Jpn. J. Appl. Phys. Vol.29, No. 12, 1990, pp. 26982704 Google Scholar
11 Liu, G. and Fonash, S., Appl. Phys. Lett. 55 (7) 1989 (660)Google Scholar
12 Liu, G. and Fonash, S., Appl. Phys. Lett. 62 (20) 1993 (2554)Google Scholar
13 Herd, S., Chaudhari, P., and Brodsky, M., J. Non-Cryst. Solids Vol 7, 1972, pp.309327 Google Scholar
14 Iverson, R. and Reif, R., J. Appl. Phys. 62 (5) 1987 (1675)Google Scholar
15 Takamori, T., Messier, R., and Roy, R., Appl. Phys. Lett. Vol.20, No. 5, 1972, p. 201 Google Scholar
16 Takamori, T., Messier, R., and Roy, R., J. Mats. Sci. 8 (1973) p. 1809 Google Scholar