Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T06:15:13.476Z Has data issue: false hasContentIssue false

Applications of Neutron Scattering to Problems in Materials Science

Published online by Cambridge University Press:  25 February 2011

J. R. Weertman*
Affiliation:
Northwestern University, Dept. of Materials Science and Engineering and the Materials Research Center, Evanston, IL 60201

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neutrons possess a number of attributes which make neutron scattering a powerful technique for the investigation of problems in materials science. These properties are discussed with emphasis on their importance to materials characterization. A number of recent experiments using neutron scattering will be described. These studies include the areas of damage accumulation; residual stress; porosity in ceramics; polymer chain configurations; phase changes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

References

1. Bacon, G. E., “Neutron Diffraction,” 3rd ed., Oxford University Press, 1975.Google Scholar
2. Treatise on Materials Science and Engineering, Vol.15, “Neutron Scattering,” Kostorz, G., Ed., Academic Press, New York,, 1979.Google Scholar
3. Glinka, C. J., Prask, H. J. and Choi, C. S., “Mechanics of Nondestructive Testing,” Stinchcomb, W. W., Ed., p 143, Plenum Press, New York, 1980.10.1007/978-1-4684-3857-4_6CrossRefGoogle Scholar
4. Weertman, J. R., “Nondestructive Evaluation: Microstructural Characterization and Reliability Strategies,” Buck, O. and Wolf, S. M., Eds., p.147, TMS-AIME, Warrendale, PA, 1981.Google Scholar
5. Case, E. D. and Glinka, C. J., J. of Mats. Sci., 19 (1984) 2962.10.1007/BF01026974CrossRefGoogle Scholar
6. Frisius, F., Kampmann, R., Beaven, P. A. and Wagner, R., “Dimensional Stability and Mechanical Behavior of Irradiated Metals and Alloys,” British Nuclear Energy Society, London, p 171, 1983.Google Scholar
7. Odette, G. R. and Glinka, C. J., to be published.Google Scholar
8. Pizzi, P., Walther, H. and Cortese, P., Proc. 8th World Conf. Nondestr. Test., p 3L7, 1976.Google Scholar
9. Schwahn, D., Kesternich, W. and Schuster, H., Met. Trans. A 12A (1981) 155.10.1007/BF02655188Google Scholar
10. Kim, S., Weertman, J. R., Spooner, S., Gllnka, C. J., Sikka, V. and Jones, W., “Nondestructive Evaluation: Application to Materials Processing”, edited by Buck, O. and Wolf, S. M., pp 169176, ASM, Metals Park, OH, 1984.Google Scholar
11. Jones, W. B., “Ferritic Steels for High Temperature Applications,” Khare, A. K., Ed., ASM, Metals Park, OH, 1983.Google Scholar
12. Page, R., Weertman, J. R. and Roth, M., Acta metall. 30 (1982) 1357.10.1016/0001-6160(82)90155-9Google Scholar
13. Yang, M. S., Weertman, J. R. and Roth, M., Scripta metall. 18 (1984) 543.10.1016/0036-9748(84)90438-1Google Scholar
14. Yang, M. S., Weertman, J. R. and Roth, M., “Creep and Fracture of Engineering Materials and Structures”, edited by Wilshire, B. and Owen, D. R. J., pp 149156, Pineridge Press, Swansea, UK, 1984.Google Scholar
15. Yang, M. S., Weertman, J. R. and Roth, M., Fifth Risø International Symposium on Metallurgy and Materials Science, edited by Hansen, N. H., Eldrup, M., Hansen, N., Jensen, D. J., Leffers, T., Lilholt, H., Pedersen, O. B. and Singh, B. N., p 589, Roskilde, Denmark, 1984.Google Scholar
16. Verrilll, M., Spooner, S. and Weertman, J. R., to be published.Google Scholar
17. Page, R. A. and Lankford, J., J. Am. Cer. Soc. 66 (1983) C–146. 10.1111/j.1151-2916.1983.tb10116.xGoogle Scholar
18. Page, R. A., Lankford, J. and Spooner, S., Acta metall. 32 (1984) 1275.10.1016/0001-6160(84)90073-7CrossRefGoogle Scholar
19. Page, R. A., Lankford, J. and Spooner, S., J. Mats. Sci. 19 (1984) 3360.10.1007/BF00549828Google Scholar
20. Schmank, M. J. and Krawitz, A. D., Met. Trans. A 13A (1982) 1069.10.1007/BF02643404Google Scholar
21. Prask, H. J. and Choi, C. S., J. Nuclear Mats. 126 (1984) 124.10.1016/0022-3115(84)90082-5Google Scholar
22. Krawltz, A. D., Drake, E. F., DeGroot, R. L., Vasel, C. H. and Yelon, W. B., ”Neutron Diffraction Studies of Cemented Carbide Composites,: Science of Hard Materials, Plenum Press, New York, p 973, 1983.Google Scholar
23. Krawitz, A. D., Roberts, R. and Faber, J., “Residual Stress Relaxation in Cemented Carbide Composlted Second International Conference on the Science of Hard Maberials, Rhodes, Greece, Sept. 23–29, 1984.10.1007/978-1-4613-2775-2_27Google Scholar
24. Jensen, D. Juul, Hansen, N., Kjems, J. K. and Leffers, T., Fifth Risø International Symposium on Metallurgy and Materials Science, edited by Hansen, N. H., Eldrup, M., Hansen, N., Jensen, D. J., Leffers, T., Lilholt, H., Pedersen, O. B. and Singh, B. N., p 325, Roskilde, Denmark, 1984.Google Scholar
25. Berk, N. and Hardman-Rhyne, K., to be published.Google Scholar
26. Hardman-Rhyne, K. and Berk, N., to be published.Google Scholar
27. Glinka, C. J. and Lochmuller, C. H., to be published.Google Scholar
28. Allen, G. and Petrie, S. E. B., “The Physical Structure of the Amorphous State,”, Allen, G. and Petrie, S. E. B., Eds., Marcel Dekker, 1976.Google Scholar
29. Bartels, C. R., Graessley, W. W. and Crist, B., J. Polymer Sci.: Polymer Letters Edn. 21 (1983) 495.Google Scholar
30. Barrels, C. R., Crist, B. and Graessley, W. W., Macromolecules 17 (1984) 2702.10.1021/ma00142a045CrossRefGoogle Scholar
31. LaSalle, J. C., Spooner, S. and Schwartz, L. H., Mats. Res. Soc. Symp. Proc. 21 (1984) 549.10.1557/PROC-21-549CrossRefGoogle Scholar
32. Singhal, S. P., Herman, H. and Kostorz, G., J. Appl. Cryst. 11 (1978) 572.10.1107/S0021889878013904Google Scholar
33. Salva-Ghilarduccl, A., Simon, J. P., Guyot, P and Ansara, I., Acta metall. 31 (1983) 1705.Google Scholar
34. Fateml, M., Pande, C. S. and Child, H. R., Phil. Mag. A 48 (1983) 479.10.1080/01418618308234908Google Scholar
35. Fatemi, M., Phil. Mag., in press.Google Scholar