Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T03:07:28.268Z Has data issue: false hasContentIssue false

Applications of Laser Processing for Sensors and Actuators

Published online by Cambridge University Press:  15 February 2011

M. Meunier
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 LPL : Laser Processing Laboratory (meunier@phys.polymtl.ca)
R. Izquierdo
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 LPL : Laser Processing Laboratory (meunier@phys.polymtl.ca) USA : Laboratory f or Integration of Sensors and Actuators (currie@lisa.polyrtmtl.ca)
B. Shen
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 LPL : Laser Processing Laboratory (meunier@phys.polymtl.ca)
A. Lecours
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 USA : Laboratory f or Integration of Sensors and Actuators (currie@lisa.polyrtmtl.ca)
M. Allard
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 LPL : Laser Processing Laboratory (meunier@phys.polymtl.ca)
A. Bergeron
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 LPL : Laser Processing Laboratory (meunier@phys.polymtl.ca)
F. Hanus
Affiliation:
Laboratoire de Physique de l'État Solide, Département des Matériaux, Université de Mons-Hainaut, avenue Maistreau 23 B-7000, Mons, Belgique.
S. Boughabah
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 LPL : Laser Processing Laboratory (meunier@phys.polymtl.ca)
D. Ivanov
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 USA : Laboratory f or Integration of Sensors and Actuators (currie@lisa.polyrtmtl.ca)
J.F. Currie
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 USA : Laboratory f or Integration of Sensors and Actuators (currie@lisa.polyrtmtl.ca)
L. Laude
Affiliation:
Laboratoire de Physique de l'État Solide, Département des Matériaux, Université de Mons-Hainaut, avenue Maistreau 23 B-7000, Mons, Belgique.
A. Yelon
Affiliation:
École Polytechnique de MontréalDépartement de Génie Physique and GCM (Groupe de recherche en physique et technologie des Couches Minces), Thin Film Group, Montréal, Canada H3C 3A7 LPL : Laser Processing Laboratory (meunier@phys.polymtl.ca) USA : Laboratory f or Integration of Sensors and Actuators (currie@lisa.polyrtmtl.ca)
Get access

Abstract

The fabrication of sensors and actuators requires new materials with multicomponent stoichiometry as well as new three-dimensional microstructures. We present several potential applications of laser processing for the fabrication of sensors and actuators. The first example concerns gas sensors which require ionic conductor multicomponent ceramics whose stoichiometry is not maintained by conventional sputtering methods. We have successfully employed pulsed laser deposition (PLD) for producing high quality NASICON (Na SuperIonic CONductor) thin films. XPS measurements show that all elements are transferred from a target of Na1+xZr2SixP3-xO12, (where 0 < x < 3 ) to the substrate, and that the composition of the thin film is very close to that of the target. Electrical measurements show good ionic conductivity. Thus, these films are suitable for the fabrication of electrochemical gas sensors. Since such ceramic thin films are very sensitive to liquids, wet etching is prohibited, and patterning is done using laser ablation. For other applications, a laser micromachining technique has been developed to make tunnels and cavities in Si under SiO2 films, based on the laser-induced CI2 etching of Si and high chlorine Si/SiO2 etch rate ratios. Tunnels with length of up to 3 mm and cavities of 100×100 cm2 were successfully fabricated in SiO2/Si bilayer samples. These are usable in microfluidic or gas pressure measurement systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sze, S.M. editor, Semiconductor Sensors (John Wiley and Sons, New York, NY, 1994).Google Scholar
2 Maseeh, F., Sol. State Technol., p. 50, October (1995).Google Scholar
3 Chrisey, D.B. and Hubler, G.K., Pulsed Laser Deposition (John Wiley and Sons, New York, NY, 1994).Google Scholar
4 Ehrlich, D.J. and Tsao, J.Y., Laser Microfabrication (Academic Press, Boston, MA, 1989).Google Scholar
5 Weiss, S. A., Photonics Spectra, p. 108, Octobre (1995).Google Scholar
6 von Alvensleben, F., Gonschior, M., Kappel, H. and Heekenjann, P., Optics and Photonics News, 6, 23 (1995).Google Scholar
7 Izquierdo, R., Hanus, F., Lang, Th., Ivanov, D., Meunier, M., Laude, L., Currie, J. F. and Yelon, A., Appl. Surf. Sci., in press.Google Scholar
8 Frenkel, A., Saifi, M. A., Venkatesan, T., Lin, C., Wu, X. D. and Inam, A., Appl. Phys. Lett. 54, 1594 (1989).Google Scholar
9 Lee, L. P., Char, K., Coclough, M. S. and Zaharchuk, G., Appl.Phys. Lett. 59, 3051 (1991).Google Scholar
10 Roy, D., Krupanidhi, S.B. and Dougherty, J.P., J. Appl. Phys. 69, 7930 (1991).Google Scholar
11 Kordi Ardakani, H., Shushtarian, S. S., Kanetkar, S. M., Karekar, R. N., Ogale, S. B., J. of Mater. Sci. Lett., 12, 63 (1993).Google Scholar
12 Post, M.L., Sanders, B. W. and Kennepohl, P., Appl. Phys. B1314, 272 (1993).Google Scholar
13 Bjormander, C., Sreenivas, K., Grishin, A. M. and Rao, K. V., Appl. Phys. Lett. 67, 58 (1995).Google Scholar
14 Maruyama, T., Sasaki, S. and Saito, Y., Solid State Ionics, 23, 107112 (1987).Google Scholar
15 Saito, Y. and Maruyama, T., Solid State Ionics, 28–30, 1644 (1988).Google Scholar
16 Hong, H. Y.-P., Mat. Res. Bull., 11, 173182 (1976)Google Scholar
17 Goodenough, J.B., Hong, H. Y.-P., Kafadas, J. A., Mat. Res. Bull. 11, 203220 (1976).Google Scholar
18 Ivanov, D., Currie, J.F., Lecours, A., Yelon, A., Poulin, S., The 7th Intern. Conf. on Solid State Sensors and Actuators, 382, June 993, Yokohama, Japan (1993).Google Scholar
19 Lang, Th., Caron, M., Izquierdo, R., Lecours, A., Pouliot, L., Ivanov, D., Currie, J.F. and Yelon, A., Appl. Surf. Sci.,in press.Google Scholar
20 Black, J.G., Doran, .P., Rothschild, M., and Ehrlich, D.J., Appl. Phys. Lett. 50 (1987) 1016.Google Scholar
21 Johnson, A.W., Ehrlich, D.J. and Schlossberg, H.R. eds, Laser-Controlled Chemical Processing of Surfaces. (North-Holland, Amsterdam, 1984).Google Scholar
22 Lecours, A., Caron, M., Ciureanu, P., Turcotte, G., Ivanov, D., Yelon, A. and Currie, J. F., Appl. Surf. Sci., in pressGoogle Scholar
23 Petersen, K. E., Proc. IEEE 70 (5), 420 (1982).Google Scholar
24 Linder, C., Paratte, L., Gretillat, M-A., Jaecklin, V.P., and de Rooij, N.F., J. Micromech. Microeng. 2, 122 (1992).Google Scholar
25 Ehrlich, D.J., Osgood, R.M., and Deutsch, T.F., Appl. Phys. Lett. 38, 1018 (1981).Google Scholar
26 Müllenborn, M., Dirac, H., Petersen, J.W., and Bouwstra, S., in Transducers 1995: The 8th International Conference on Solid State Sensors and Actuators, p. 166.Google Scholar
27 Ehrlich, D.J., in Excimer Lasers: The Tool, Fundamentals of Their Interactions with Matter, Field of Application, Edited by Laude, L.D., Kluwer (Academic Publishers, Netherlands, 1994), p.307.Google Scholar
28 Bloomstein, T.M. and Ehrlich, D.J., Appl. Phys. Lett. 61(6), 708 (1992).Google Scholar
29 Bloomstein, T.M. and Ehrlich, D.J., J. Vac. Sci. Technol. B.10(6). 2671 (1992).Google Scholar
30 Alavi, M., Buttgenbach, S., Schumacher, A., Wagner, H.-J., Sensors and Actuators A32, 299 (1992).Google Scholar
31 Alavi, M., Buttgenbach, S., Schumacher, A., Wagner, H.-J., in Transducers 91: IEEE International Conference on Solid State Sensors and Actuators. (IEEE, New York, 1991), p. 512.Google Scholar
32 Alavi, M., Fabula, Th., Schumacher, A., Wagner, H.-J., Sensors and Actuators A37–38, 661 (1993).Google Scholar
33 Bloomstein, T.M. and Ehrlich, D.J., in Transducers 91: IEEE International Conference on Solid State Sensors and Actuators. (IEEE, New York, 1991), p. 507.Google Scholar
34 Arnone, C. and Scelsi, G.B., Appl. Phys. Lett. 54(3), 225 (1989).Google Scholar
35 Shen, B., Izquierdo, R. and Meunier, M., in Proceedings of SPIE: Laser-assisted Fabrication of Thin Films and Microstructures. Vol. 2045, edited by Boyd, I. W. (SPIE, Belingham, 1993), p. 91.Google Scholar
36 Shen, B., Allard, M., Boughaba, S., Izquierdo, R. and Meunier, M., Can. J. Phys., in press.Google Scholar