Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-19T22:55:17.436Z Has data issue: false hasContentIssue false

Application of Norbury Rule to Thermal Conductivity in Intermetallic Compounds

Published online by Cambridge University Press:  22 February 2011

Yoshihiro Terada
Affiliation:
Hokkaido University, Graduate School of Engineering, Division of Materials Science and Engineering, Sapporo 060, Japan
Tetsuo Mohri
Affiliation:
Hokkaido University, Graduate School of Engineering, Division of Materials Science and Engineering, Sapporo 060, Japan
Tomoo Suzuki
Affiliation:
Hokkaido University, Graduate School of Engineering, Division of Materials Science and Engineering, Sapporo 060, Japan
Get access

Abstract

Thermal conductivity data at room temperature, which are measured by laser-flash method, are presented in B2 aluminides and titanides, and in nickel based L12 compounds. The thermal conductivity λ is changed in the following order of the compounds. λ(NiAl) >λ(CoAl)>λ(FeAl), λ(NiTi)<λ(CoTi)<λ(FeTi), λ(Ni3Al)>λ(Ni3Si) and λ(Ni3Ga)>λ(Ni3Ge). According to Norbury rule originally proposed for the concentration dependence of electrical resistivity, the increasing rate is greater in the solid solution, where the position of solute elements is more remote in horizontal distance from a host metal in the periodic table. It is found that this rule holds for the thermal conductivity measured for the intermetallic compounds with the combination of a series of guest constituents and a fixed host constituent both in the B2 and Ll2 intermetallic compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Terada, Y., Ohkubo, K., Nakagawa, K., Mohri, T. and Suzuki, T., Intermetallics, accepeted for publication.Google Scholar
2. Hanai, S., Terada, Y., Ohkubo, K., Mohri, T. and Suzuki, T., Intermetallics, to be published.Google Scholar
3. Norbury, A.L., Trans. Faraday Soc., 16, 570 (1921).Google Scholar
4. Caskey, G.R., Franz, J.M. and Sellmyer, D.J., J. Phys. Chem. Solids, 34, 1179 (1973).Google Scholar
5. Butler, S.R., Hanlon, J.E. and Wasilewski, R.J., J. Phys. Chem. Solids, 30, 1929 (1969).Google Scholar
6. Ikeda, K., Phys. Stat. Solidi(b), 62, 655 (1974).Google Scholar
7. Jacobi, H., Vassos, B. and Engell, H.J., J. Phys. Chem. Solids, 30, 1261 (1969).Google Scholar
8. Sellmyer, D.J., Caskey, G.R. and Franz, J.M., J. Phys. Chem. Solids, 33, 561 (1972).Google Scholar
9. Yamaguchi, Y., Kiewit, D.A., Aoki, T. and Brittain, J.O., J. Appl. Phys., 39, 231 (1968).Google Scholar
10. Goff, J.F., J. Appl. Phys., 39, 2208 (1968).Google Scholar
11. Allgaier, R.S., J. Phys. Chem. Solids, 28, 1293 (1967).Google Scholar
12. Williams, R.K., Graves, R.S., Weaver, J.F. and McElroy, D.L., Mat. Res. Soc. Symp. Proc., 39, 505 (1985).Google Scholar
13. Ziman, J.M., Principles of the Theory of Solids. (Cambridge University Press, London, 1964 ).Google Scholar
14. Blatt, F.J., Physics of Electronic Conduction in Solids. (McGraw-Hill, New York, 1968).Google Scholar
15. Kittel, C., Introduction to Solid State Physics. (John Wiley and Sons, New York, 1953 ).Google Scholar
16. Linde, J.O., Ann. Phys., 15, 219 (1932).Google Scholar
17. Nordheim, L., Ann. Phys., 9, 607 (1931).Google Scholar
18. Johanson, C.H. and Linde, J.O., Ann. Physik, 25, 1 (1936).Google Scholar
19. Sykes, C. and Evans, H., J. Inst. Metals, 58, 255 (1936).Google Scholar
20. Jones, F.W. and Sykes, C., Proc. Roy. Soc. (A), 166, 376 (1938).Google Scholar
21. Komer, A. and Sidorov, S., J. Tech. Phys. USSR, 11, 711 (1941); J. Phys. USSR, 4, 552 (1941).Google Scholar
22. Kaya, S. and Nakayama, M., Proc. Phys. Math. Soc. Japan, 22, 126 (1940).Google Scholar
23. Thompson, N., Proc. Phys. Soc. London, 52, 217 (1940).Google Scholar
24. Kaya, S., J. Faculty Sci. Hokkaido Imp. Univ., 2, 29 (1938).Google Scholar
25. Yokoyama, T., Japan., J. Inst. Metals, 17, 263 (1953).Google Scholar
26. McGeary, R. and Siegel, S., Phys. Rev., 65, 347 (1944).Google Scholar
27. Hirabayashi, M., J. Japan. Inst. Metals, 16, 67 (1952).Google Scholar
28. Hirabayashi, M. and Muto, Y., Acta Metall., 9, 497 (1961).Google Scholar
29. Takczawa, T., Doctor Thesis, Tokyo Inst. Tech., 1975.Google Scholar