Skip to main content Accessibility help
×
Home

The Application of Energetic SHS Reactions in the Synthesis of Multi-functional Bone Tissue Engineering and Drug Delivery Systems

  • Reed Ayers (a1), Doug Burkes (a2), Guglielmo Gottoli (a3), H.C. Yi (a4), Jaque Guigné (a5) and John Moore (a6)...

Abstract

The term combustion synthesis, or self-propagating high temperature synthesis (SHS), refers to an exothermic chemical reaction process that utilizes the heat generated by the exothermic reaction to ignite and sustain a propagating combustion wave through the reactants to produce the desired product(s). The products of combustion synthesis normally are extremely porous: typically 50 percent of theoretical density

Advantages of combustion synthesis over traditional processing routes, e.g., sintering, in the production of advanced materials such as ceramics, intermetallic compounds and composites include process economics, simplicity of operation, and low energy requirements. However, the high exothermicity and rapid combustion propagation rates necessitate a high degree of control of these reactions.

One research area being conducted in the Institute for Space Resources (ISR) at the Colorado School of Mines (CSM) is the application of combustion synthesis (SHS) to synthesize advanced, engineered porous multiphase/heterogeneous calcium phosphate (HCaP), NiTi, NiTi-TiC, TiB-Ti, TiC-Ti for bone tissue engineering and drug delivery systems. Such material systems require a complex combination of properties that can be truly classified as multi-functional materials. The range of properties includes: an overall porosity of 40-60% with a pore size of 200-500 μm; mechanical properties (compression strength and Young’s modulus) that match those of natural bone to avoid ‘stress shielding’; and a surface chemistry that is capable of facilitating bone growth and mineralization.

The paper will discuss the synthesis of porous multiphase/heterogeneous calcium phosphate (HCaP), NiTi, NiTi-TiC, TiB-Ti, TiC-Ti for bone tissue engineering and drug delivery systems.

Copyright

References

Hide All
1) Greene, D, Pruitt, L, Maas, C S, Laryngoscope. 107, 957962 (1997).
2) Klawitter, J J, Hulbert, S F, J Biomed Mater Res Symp. 2, 161229 (1971).
3) Hulbert, S F, Young, F A, Mathews, R S, Klawitter, J J, Talbert, C D Stelling, F H, J Biomed Mater Res. 4, 433456 (1970).
4) Ripamonti, U, Petit, J C, Moehl, T, van den, Heever B, van, Wyk J, J Cranio Maxillo Fac Surg. 21, 302308 (1993).
5) Kent, J N, Zide, F, Otolarynogol Clin North Am. 17, 273319 (1984)
6) Wolford, L M, Wardrop, R W, Hartog, J M, J Oral Maxillofac Surg. 45, 10341042 (1987).
7) Eppley, B L, Sadove, A M, J Craniofac Surg. 1, 191195 (1990).
8) Bragdon, C R, Burke, D, Lowenstein, J D, O'Connor, D O, Ramamurti, B, Jasty, M, Harris, W H, J Arthroplasty. 11, 945951 (1996).
9) Ramaurti, B S, Orr, T E, Bragdon, C R, Lowenstein, J D, Jasty, M, Harris, W H, J Biomed Mater Res. 36, 274280 (1997).
10) Phillips, J H, Forrest, C R, Gruss, J S, Clin Plast Surg. 19, 4158 (1992).
11) Szachowicz, E H, Otolaryngol Clin North Am. 28, 865880 (1995).
12) Desilets, C P, Marden, L J, Patterson, A L, Hollinger, J O, J Craniofac Surg. 1, 150153 (1992).
13) Motoki, D S, Mulliken, J B, Clin Plast Surg. 17, 527544 (1990).
14) Eggli, P S, Müller, W, Schenk, R K, Clin Orthop. 232, 127138 (1988).
15) Light, M, Kanat, I O, J Foot Surg. 30, 472476 (1991).
16) Holmes, R E, Wardrop, R W, Wolford, L M, J Oral Maxillofac Surg. 46, 661671 (1988).
17) Ayers, R A, Wolford, L M, Bateman, T A, Ferguson, V L, Simske, S J,. J Biomed Mater Res. 47, 5459 (1999).
18) Nunes, C R, Simske, S J, Sachdeva, R, Wolford, L M, J Biomed Mater Res. 36, 560563 (1997).
19) Jahn, A F, Laryngoscope. 102, 289299 (1992).
20) Engh, C A, Bugbee, W D, “Extensively porous-coated femoral stems,”in Hip surgery: Materials and developments. Sedel, L, Cabanela, M E (eds.), (Mosby, St. Louis, 1998) pp. 243252.
21) Ducheyne, P,”Bioactive cement phosphate ceramics and glasses,” Hip surgery: Materials and developments Sedel, L, Cabanela, M E (eds.), (Mosby, St. Louis, 1998) pp. 7582.
22) Ayers, R A, Neilsen-Priess, S, Ferguson, V, Gotolli, G, Moore, J J, Kleebe, H J,. Mat Sci and Eng C. In Press, (2005).
23) Gottoli, G, Ayers, R, Schowengerdt, F, Moore, J, Trans Soc for Biomat, 29, 239 (2003).
24) lickorish, D, Ramshaw, J A M, Werkmeister, J A, Glattauer, V, Howlett, C R,. J Biomed Mater Res. 68A, 1927 (2004).
25) El-Ghannam, A, Ducheyne, P, Shapiro, I M, J Biomed Mater Res, 36, 167180 (1997).
26) Simske, S J, Sachdeva, R, J Biomed Mater Res. 29, 527533 (1995).
27) Ayers, R A, Simske, S J, Bateman, T A, Petkus, A, Sachdeva, R L C, Gyunter, V E, J Biomed Mater Res. 45, 4247 (1999).
28) Shabalovskaya, S A, Biomed Mater Eng. 6, 267289 (1996).
29). Dai, K, Biomed Mater Eng. 6, 233240 (1996).
30) Airoldi, G, Riva, G, Biomed Mater Eng. 6, 299305 (1996).
31) Itin, V I, Gyunter, V E, Shabalovskaya, S A, Sachdeva, R L C, Materials Characterization. 32, 179187(1994).
32) Yi, H C, Moore, J J J Minerals Metals Mater Soc. 42, 3135(1990).
33) Gottoli, Guglielmo. The evaluation of the biological potential of porous and dense nickel-titanium titanium-carbide composites produced by combustion synthesis (SHS) reactions via the interactions of simulated body fluids (SBF), Ph.D. Dissertation, 2005
34) Belk, Denise L. Characterization of porous nickel titanium produced by self-propagating high temperature synthesis for use in biomedical applications Ph.D. Dissertation, 2005.
35) Lakes, R, “Composite Biomaterials,” The biomedical engineering handbook: Bronzino, J D (ed), (CRC Press, Boca Raton, 1995) pp. 598610
36) Burkes, D E, Gottoli, G, Moore, J J, Yi, H C, Ayers, R A. Mat Res Soc Symp Proc. 800, (2004).
37) Burkes, D E, Gottoli, G, Moore, J J and Ayers, R A. Mater. Res. Soc. Symp. Proc. 844 299304 (2005).
38) Burkes, D E, Gottoli, G and Moore, J J. Submitted, Mat. Sci. Eng., (August 2005).
39) Cui, Y, Winton, M I, Zhang, Z F, Rainey, C, Marshall, J, De, Kernion J B, Eckhert, C D. Oncol Rep. 11, 887–92 (2004).
40) Dourson, M, Maier, A, Meek, B, Renwick, A, Ohanian, E, Poirier, K. Biol Trace Elem Res. 66, 453–63 (1998).

Keywords

The Application of Energetic SHS Reactions in the Synthesis of Multi-functional Bone Tissue Engineering and Drug Delivery Systems

  • Reed Ayers (a1), Doug Burkes (a2), Guglielmo Gottoli (a3), H.C. Yi (a4), Jaque Guigné (a5) and John Moore (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed