Published online by Cambridge University Press: 10 February 2011
Ultra-small-angle x-ray scattering provides quantitative and statistically significant information on the size distribution of electron density inhomogeneities with dimensions between ≈100 Å and ≈5 μm. All sizes are sampled simultaneously with a single experiment, removing the possibility of observational bias. In a material such as commercial silicon nitride, where the inhomogeneities are due to populations of intergranular secondary phases and voids of similar dimensions, the scattering contains contributions from each individual population. A single USAXS scan cannot separate overlapping populations of scatterers due to the different contrasts of the microstructural components. Anomalous USAXS (A-USAXS) is an elementspecific contrast variation method to vary the scattering contribution from one of the populations while holding that of the other populations fixed. To follow the size evolution under tensile creep of both the cavities and the Yb disilicate secondary phases, A-USAXS data was measured near the Yb LIII absorption edge. Creep cavity and disilicate size distributions were each determined as a function of deformation.