Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T16:53:18.522Z Has data issue: false hasContentIssue false

The Anomalous Behavior of Silicon During Nanoindentation

Published online by Cambridge University Press:  22 February 2011

G. M. Pharr*
Affiliation:
Rice University, Department of Materials Science, P.O. Box 1892, Houston, TX 77251
Get access

Abstract

Two separate phenomena occur during the low-load indentation of silicon which make its behavior distinctly different from that of most materials. First, silicon is one of only a very few materials whose hardness exceeds the pressure needed to transform it to a denser crystalline (or amorphous) form, and because of this, a reversible, pressure-induced phase transformation occurs during indentation. The transformation enhances the electrical conductivity of the material and creates a region around the indenter which flows like a soft metal. Second, silicon cracks when indented by a Berkovich or Vickers indenter at loads of less than 100 mN, i.e., loads typically used in nanoindentation experiments. These two phenomena, which account for a number of unusual features in the indentation load-displacement behavior, are documented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pharr, G.M., Oliver, W.C., and Clarke, D.R., Scripta Metall. 23, 1949 (1989).Google Scholar
2. Pharr, G.M., Oliver, W.C., and Clarke, D.R., J. Elec. Mater. 19, 881 (1990).Google Scholar
3. Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L., Phys. Rev. B 24, 4679 (1986).Google Scholar
4. Minomura, H. and Drickamer, H.G., J. Phys. Chem Solids 23, 451 (1962).Google Scholar
5. Olijnyk, H., Sikka, S.K., and Holzapfel, W.B., Phys. Let. 103A, 137 (1984).Google Scholar
6. Duelos, S.C., Vohra, Y.K., and Ruoff, A.L., Phys. Rev. Let. 58, 775 (1987).Google Scholar
7. Wentorf, R.H. and Kasper, J.S., Science 122, 338 (1963).Google Scholar
8. Jamieson, J.C., Science 139, 764 (1963).Google Scholar
9. Kasper, J.S. and Richards, S.M., Acta Cryst. 17, 752 (1964).Google Scholar
10. Yin, M.T. and Cohen, M.L., Phys. Rev Lett. 45, 1004 (1980).CrossRefGoogle Scholar
11. Hu, J.Z. and Spain, I.L., Sol. State Comm. 51, 263 (1984).Google Scholar
12. Spain, I.L., Hu, J.Z., Menoni, C.S. and Black, D., J. de Physique 45., Colloque C8, 407(1984).Google Scholar
13. Weinstein, B.A. and Piermarini, G.J., Phys. Rev. B 12, 1172 (1975).Google Scholar
14. Gupta, M.C. and Ruoff, A.L., J. Appl. Phys. 51, 1072 (1980).CrossRefGoogle Scholar
15. Gridneva, I.V., Milman, Yu. V., and Trefilov, V.I., phys. stat. sol. (a) 14, 177 (1972).Google Scholar
16. Gilman, J.J., J. Mater. Res., in press.Google Scholar
17. Eremenko, V.G. and Nikitenko, V.I., phys. stat. sol. (a) 14, 317 (1972).CrossRefGoogle Scholar
18. Shimomura, O., Minomura, S., Sakai, N., Asaumi, K., Tamura, K., Fukushima, J., and Endo, H., Philos. Mag. 29, 547 (1974).Google Scholar
19. Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R., and Clarke, D.R., J. Mater. Res., submitted.Google Scholar
20. Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F., and Hockey, B.J., Phys. Rev. Let. 21, 2156 (1988).Google Scholar
21. Pharr, G.M., Oliver, W.C., and Harding, D.S., J. Mater. Res. 6, 1129 (1991).CrossRefGoogle Scholar
22. Mishima, O., Calvert, L.D., and Whalley, E., Nature 310, 393 (1984).Google Scholar
23. Mishima, O., Calvert, L.D., and Whalley, E., Nature 214, 76 (1985).CrossRefGoogle Scholar
24. Whalley, E., Phvsica 139&140B, 314 (1986).Google Scholar
25. Paul, Y., Mishima, O., and Whalley, E., J. Chem. Phys. 84, 2766 (1986).Google Scholar
26. Floriano, M.A., Whalley, E., Svensson, E.C., and Sears, V.F., Phys. Rev. Let. 57, 3062(1986).Google Scholar
27. Tse, J.S. and Klein, M.L., Phys Rev. Let. 58, 1672 (1987).CrossRefGoogle Scholar
28. Maddox, J., Nature 326, 823 (1987).Google Scholar
29. Hemley, R.J., Jephcoat, A.P., Mao, H.K., Ming, L.C., and Manghnani, M.H., Nature 334. 52 (1988).Google Scholar
30. Vohra, Y.K., Xia, H., and Ruoff, A.L., Appl. Phys. Lett. 57, 2666 (1990).Google Scholar
31. Polian, A., Itie, J.P., Carillon, C.J., Dartyge, E., Fontaine, A., and Tolentino, H., High Pressure Research 4, 309 (1990).Google Scholar
32. Lankford, J. and Davidson, D.L., J. Mater. Sci. 14, 1662 (1979).Google Scholar
33. Lankford, J., J. Mater. Sci. 16, 1177 (1981).Google Scholar
34. Sata, T., Takamoto, K., and Yoshikawa, H., Bull. Jap. Soc. Pree. Engrg. 3, 13 (1969).Google Scholar
35. Puttick, K.E., Shahid, M.A., and Hosseini, M.M., J. Phys. D 12, 195 (1979).Google Scholar
36. Lawn, B.R. and Swain, M.V., J. Mater. Sci. 10, 113 (1975).Google Scholar
37. Cook, R.F. and Pharr, G.M., J. Am. Ceram. Soc. 22, 787 (1990).CrossRefGoogle Scholar