Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T02:14:16.459Z Has data issue: false hasContentIssue false

Anomalous Behavior During The Solidification of Silicon In The Presence of Impurities

Published online by Cambridge University Press:  26 February 2011

Michael O. Thompson
Affiliation:
Dept. of Materials Science, Cornell University, Ithaca, NY 14853
P. S. Peercy
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
Get access

Abstract

Nanosecond pulsed laser irradiation of silicon results in the melting of the surface with subsequent solidification from a crystalline substrate. In the presence of impurities or alloys, the solidification dynamics are greatly affected by the nature of the impurities. Five classes of materials have been investigated: amorphous Si, mutually soluble alloys, high solubility impurities, low solubility impurities, and compound forming materials. Solidification of each of these classes of materials is discussed. Several anomalous kinetic regimes are observed, including explosive crystallization, surface nucleation of solid, and internal nucleation of melt. These results are interpreted in terms of thermodynamic modifications of the melting temperature in the alloy regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Laser Annealing of Semiconductors, edited by Poate, J. M. and Mayer, J. W., (Academic Press, New York, 1982)Google Scholar
2For a review of the current literature, see other volumes in this series, Mat. Res. Soc. Symp. Proc. 1, 4, 13, 23, 35 (1981-1985)Google Scholar
3 White, C. W., Appleton, B. R. and Wilson, S. R., in ref. 2, Chap. 5Google Scholar
4 Baeri, P., Poate, J. M., Campisano, S. U., Foti, G., Rimimi, E. and Cullis, A. G., Appl. Phys. Lett. 37, 912 (1980)Google Scholar
5 Thompson, Michael O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G. and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984)Google Scholar
6 Thompson, Michael O., Peercy, P. S. and Tsao, J. Y., submitted J. Mat. Res.Google Scholar
7 Thompson, Michael O., Peercy, P. S. and Tsao, J. Y., submitted Appl. Phys. Lett.Google Scholar
8 Thompson, Michael O., Peercy, P. S. and Tsao, J. Y., Mat. Res. Soc. Symp. Proc. 35, 169 (1985)Google Scholar
9 Peercy, P. S., Thompson, Michael O., and Tsao, J. Y., Appl. Phys. Lett. 47, 244 (1985)Google Scholar
10 Peercy, P. S., Poate, J. M., Michael Thompson, O. and Tsao, J. Y., these proceedingsGoogle Scholar
11 Peercy, P. S., Poate, J. M., Thompson, Michael O. and Tsao, J. Y., submitted Appl. Phys. Lett.Google Scholar
12 Thompson, Michael O., Peercy, P. S., Tsao, J. Y. and Stiffier, S., submitted Appl. Phys. Lett.Google Scholar
13 Cullis, A. G., Webber, H. C. and Bailey, P., J. Phys. E 12, 688 (1979)Google Scholar
14 Galvin, G. J., Thompson, Michael O., Mayer, J. W., Hammond, R. B., Paulter, N. and Peercy, P. S., Phys. Rev. Lett. 48, 33 (1982)Google Scholar
15 Thompson, Michael O. and Calvin, G. J., Mat. Res. Soc. Symp. Proc. 13, 57 (1983)Google Scholar
16 Thompson, Michael O., Galvin, G. J., Mayer, J. W., Peercy, P. S. and Hammond, R. B., Appl. Phys. Lett. 42, 455 (1983)Google Scholar
17 Liquid Semiconductor, Glazov, V. M., Chizhevskaya, S. N. and Glagoleva, N. N., Eds. (Plenum Press, New York, 1969)Google Scholar
18 Auston, D. H., Surko, C. M., Venkatesan, T. N. C., Slusher, R. E. and Golovchenko, J. A., Appl. Phys. Lett. 33, 437 (1978)Google Scholar
19 Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. and Jacobson, D. C., Appl. Phys. Lett. 42, 698 (1983)Google Scholar
20 Narayan, J. and White, C. W., Appl. Phys. Lett. 44, 35 (1984)Google Scholar
21 Narayan, J., White, C. W., Holland, O.W. and Aziz, M. J., J. Appl. Phys. 56, 1821 (1984)Google Scholar
22 Sinke, W. and Saris, F. W., Phys. Rev. Lett. 53, 2121 (1984)Google Scholar
23 Leamy, H. J., Brown, W. L., Cellar, G. K., Foti, G., Gilmer, G. H. and Fan, J. C. C., Mat. Res. Soc. Symp. Proc. 1, 89 (1981)Google Scholar
24 Tsao, J. Y., private communication and work in progress.Google Scholar
25 Thompson, Michael O., Mayer, J. W., Cullis, A. G., Webber, A. G., Chew, N. G., Poate, J. M. and Jacobson, D. C., Phys. Rev. Lett. 50, 896 (1983).CrossRefGoogle Scholar
26 Goldsmid, H. J., Kaila, M. M. and Paul, G. L., Phys. Stat. Sol., 76, K31 (1983).Google Scholar
27For example, Kanemitsu, Y., Nakada, I. and Kuroda, H., Appl. Phys. Lett. 47, 939 (1985).Google Scholar
28 Olesinski, R. and Abbaschian, G. J., Bull. Alloy Phase Diag. 5, 180 (1984)Google Scholar
29 Abeles, B., Beers, P. S., Cody, D. G. and Dismukes, J. P., Phys. Rev. 125, 44 (1962).Google Scholar
30 Cahn, J. W., Coriell, S. R. and Boettinger, W. J., in Laser and Electron Beam Processing of Materials, White, C. W. and Peercy, P. S., Ed., (Academic Press, New York 1980), p. 89 Google Scholar
31 Galvin, G. J., Mayer, J. W. and Peercy, P. S., Appl. Phys. Lett. 46, 644 (1985).Google Scholar
32 Thompson, M. O., Bucksbaum, P. H. and Bokor, J., Mat. Res. Soc. Symp. Proc. 35, 181 (1985).CrossRefGoogle Scholar
33 Larson, B. C. and Tischler, J. Z., these proceedingsGoogle Scholar
34 Campisano, S. U., Jacobson, D. C., Poate, J. M., Cullis, A. G. and Chew, N. G., Appl. Phys. Lett. 46, 846 (1985)Google Scholar
35 Kaiser, W. and Keck, P. H., J. Appl. Phys. 28, 882 (1957)Google Scholar
36 Pinizzotto, R., Mat. Res. Soc. Symp. Proc 27, 265 (1984)Google Scholar