Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-10T12:26:21.098Z Has data issue: false hasContentIssue false

Annealing Effects on Interfacial Fracture of Gold-Chromium Films in Hybrid Microcircuits

Published online by Cambridge University Press:  10 February 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551–0969, nrmoody@sandia.gov
D. P. Adams
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0959
A. A. Volinsky
Affiliation:
University of Minnesota, Minneapolis, MN 55455
M. D. Kriese
Affiliation:
Osmic Inc., Troy. MI 48084–5532
W. W. Gerberich
Affiliation:
University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

In this study, stressed overlayers and nanoindentation were used to study the effect of elevated temperature on the resistance to interfacial fracture of gold-chromium films in hybrid microcircuits. The samples were prepared by sputter deposition of gold films and chromium adhesive layers onto sapphire substrates. Some films were left in the as-deposited condition for testing. Others were annealed until either most or all the chromium adhesive layer had diffused from the substrate interface. Stressed overlayers and nanoindentation were then used to drive interfacial delamination and blister formation. From these blisters, interfacial fracture energies were determined using mechanics-based models modified for multilayer film effects. The results clearly showed that the chromium interlayers increased interfacial fracture energy. However, they showed an even greater increase in fracture energy after diffusion had reduced the continuous chromium adhesion layer to a solid solution of gold and chromium, suggesting two different mechanisms act to control resistance to interfacial fracture in these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mittal, K. L., Electrocomponent Science and Technology, 3, 21 (1976).Google Scholar
2. Mattox, D. M., Thin Solid Films, 18, p. 173186 (1973).Google Scholar
3. Munitz, A. and Komem, Y., Thin Solid Films, 37, 171 (1976).Google Scholar
4. Thomas, R. E. and Haas, G. A., J. Appl. Phys., 43, 4900 (1972)Google Scholar
5. Rairden, J. R., Neugebaur, C. A., and Sigsbee, R. A., Metall. Trans., 2, 719 (1971).Google Scholar
6. George, M. A., Glaunsinger, W. S., Thundat, T., and Lindsay, S. M., Thin Solid Films, 189,59 (1990).Google Scholar
7. Munitz, A. and Komem, Y., Thin Solid Films, 71, 177 (1980).Google Scholar
8. Kriese, M. D., Gerberich, W. W., and Moody, N. R., J. Mater. Res., 14, 3007 (1999).Google Scholar
9. Moody, N. R., Hwang, R. Q., Venkataraman, S., Angelo, J. E., Norwood, D. P., and Gerberich, W. W., Acta mater, 46, p. 585 (1998).Google Scholar
10. Kriese, M. D., Moody, N. R., and Gerberich, W. W., Acta mater., 46, 6623 (1998).Google Scholar
11. Bagchi, A. and Evans, A. G., Thin Solid Films, 286, 203 (1996).Google Scholar
12. Bagchi, A., Lucas, G. E., Suo, Z., and Evans, A. G., J. Mater. Res., 9, 1734 (1994).Google Scholar
13. He, M. Y., Evans, A. G., and Hutchinson, J. W., Acta Metall. Mater., 44, 2963 (1996).Google Scholar
14. Hutchinson, J. W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J.W. and Wu, T. Y. (Academic Press Inc., vol.29, New York 1992) pp. 63191.Google Scholar
15. Marshall, D. B. and Evans, A. G., J. Appl. Phys., 56, 2632 (1984).Google Scholar
16. Evans, A. G. and Hutchinson, J. W., Int. J. Solids Struct., 20, 455 (1984).Google Scholar
17. Moody, N. R., Medlin, D., Boehme, D., and Norwood, D. P., Engng. Fract. Mech., 61, 107(1998).Google Scholar
18. Sun, R. C., Tisone, T. C., Cruzan, P. D., J. Appl. Phys., 46, 112 (1975).Google Scholar
19. Cullity, B. D., Elements of X-Ray Difffraction, (Addison-Wesley Publishing Co., Reading, MA, 1956) p. 431.Google Scholar
20. Evans, A. G., Ruhle, M., Dalgleish, B. J., and Charalambides, P. G., in Metal-Ceramic Interfaces, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergammon Press, Oxford, 1990) p. 345.Google Scholar
21. Chapman, B. N., Aspects of Adhesion, vol.6, edited by Alner, D. J. (U. London Press,London, 1971) p. 43; cited by C. Weaver, J. Vac. Sci. Technol., 12, 18 (1975).Google Scholar
22. Volinsky, A. A., Tymiak, N. I., Kriese, M. D., Gerberich, W. W., and Hutchinson, J. W., in Fracture and Ductile vs. Brittle Behavior-Theory, Modeling, and Experiment, (Mater.Res. Soc. Proc., 539, Pittsburgh, PA, 1999) pp. 277290.Google Scholar