Skip to main content Accessibility help
×
Home

Anisotropic Thermal Conductivity of A Si/Ge Superlattice

  • T. Borca-Tasciuc (a1), D. Song (a1), J. L. Liu (a2), G. Chen (a1), K. L. Wang (a2), X. Sun (a3), M. S. Dresselhaus (a3) (a4), T. Radetic (a5) and R. Gronsky (a5)...

Abstract

Experimental evidence for a significant thermal conductivity reduction have been reported in recent years for GaAs/AlAs, Si/Ge, and Bi 2Te3/Sb2Te3 superlattices. In this work, we present preliminary experimental results on the reduction of the in-plane and cross-plane thermal conductivity for a symmetric Si/Ge superlattice. A differential 2-wire 3ω method is developed to perform the anisotropic thermal conductivity measurements. In this technique, a patterned heater with a width much larger than the film thickness yields the cross-plane thermal conductivity of the film. The in-plane thin film thermal conductivity is inferred from the temperature rise of a narrow width heater that can create more heat spreading in the in-plane direction of the thin film. A differential method to measure the temperature drop across the film is employed in order to increase the accuracy of the measurement.

Copyright

References

Hide All
1. Yao, T., Appl. Phys. Let. 51, p. 1798 (1987).
2. Yu, X. Y., Chen, G., Verma, A., and Smith, J. S., Appl. Phys. Let. 67, p. 35543556, 68, p. 1303 (1995).
3. Capinski, W. S., and Maris, H. J., H.J., Physica B 219, p. 699701 (1996).
4. Chen, G., Tien, C. L., Wu, X., and Smith, J. S., J. Heat.Trans. 116, p. 325331 (1994).
5. Chen, G. et al., Proc. 17th Int. Thermoelectrics Conf. ICT98, p. 202205 (1998).
6. Lee, S. M., Cahill, D.G., and Venkatasubramanian, R., Appl. Phys. Let. 70, p. 29572959 (1997).
7. Venkatasubramanian, R. and Colpits, T., in Mater. Res. Soc. Symp. Proc. 478, p. 73 (1997).
8. Venkatasubramanian, R., Siivola, E., and Colpits, T., Proc. 17th Int. Thermoelectrics Conf. ICT98, p. 191196 (1998).
9. Venkatasubramanian, R., Naval Research Reviews 58, p. 44 (1998).
10. Yamasaki, I., Yamanaka, R., Mikami, M., Sonobe, H., Mori, Y. and Sasaki, T, Proc. 17th Int. Thermoelectrics Conf ICT98, p. 210213 (1998).
11. Chen, G., J. Heat Trans. 119, p. 220229 (1997).
12. Hyldgaard, P. and Mahan, G. D., in Thermal Conductivity 23, (Technomic, Lancaster, 1995). p. 172182.
13. Hyldgaard, P. and Mahan, G. D., G.D., Phys. Rew. B. 56, p. 1075410757 (1997).
14. Chen, G. and Neagu, M., Appl. Phys. Let. 71, p. 27612763 (1997).
15. Chen, G., , G., 1998, Phys. Rew. B. 57, p. 1495814973 (1998).
16. Kurabayashi, K., Touzelbaev, M., Ashegi, M., Ju, Y. S., and Goodson, K. E., Proc. 7th AIAA/ASME Joint Thermophysics and Heat Transfer Conf. ASME, HTD 357–3, p. 187 1998).
17. Cahill, G., 1990, Rev. Sci. Instrum. 61, p. 802808 (1990).
18. Lee, S. M., and Cahill, D.G., J. Appl. Phys. 81, p. 25902595 (1997).

Anisotropic Thermal Conductivity of A Si/Ge Superlattice

  • T. Borca-Tasciuc (a1), D. Song (a1), J. L. Liu (a2), G. Chen (a1), K. L. Wang (a2), X. Sun (a3), M. S. Dresselhaus (a3) (a4), T. Radetic (a5) and R. Gronsky (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed