Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T07:16:06.418Z Has data issue: false hasContentIssue false

Angle Resolved XPS Analysis of Surface Region Defects in Rapid Thermal Annealed Antimony Implanted Silicon

Published online by Cambridge University Press:  25 February 2011

S.N. Kumar
Affiliation:
Laboratoire de Physique de la Matière, Institut National des Sciences Appliquées de Lyon, 69621 Villeurbanne, France
G. Chaussemy
Affiliation:
Laboratoire de Physique de la Matière, Institut National des Sciences Appliquées de Lyon, 69621 Villeurbanne, France
A. Laugier
Affiliation:
Laboratoire de Physique de la Matière, Institut National des Sciences Appliquées de Lyon, 69621 Villeurbanne, France
B. Canut
Affiliation:
Département de Physique des Materiaux
M. Charbonnier
Affiliation:
Département de Chimie Appliquée, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France.
Get access

Abstract

Angle-resolved X-ray photoelectron spectroscopy characterization of the surface region of high-dose Sb+ ion implanted silicon, after rapid thermal treatments over various temperatures, is reported. The results obtained are compared with the Rutherford backscattering data and the capacitance-voltage measurements on the metal-oxide-semiconductor mesa structures built on them. Rapid anneal at 1100 °C of the 1.4×1016 Sb+/cm2 samples showed an anomalous deep oxygen diffusion inside the implanted region.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Williams, J.S. and Short, K.T., J. Appl. Phys. 53, 8663 (1982).Google Scholar
2 Nylandsted-Larsen, A., Pederson, F.T., Weyer, G., Galloni, R., Rizolli, R. and Armigliato, A., J. Appl. Phys. 59, 1908 (1986).Google Scholar
3 Holland, O.W. and Fathy, D., J. Appl. Phys. 63, 5326 (1988).Google Scholar
4 Antoniadis, D.A. and Moskowitz, I., J. Appl. Phys. 53, 6788 (1982).Google Scholar
5 Pennycook, S.J., Narayan, J. and Holland, O.W., J. Appl. Phys. 55, 837 (1984).Google Scholar
6 Kumar, S.N., Chaussemy, G., Canut, B., Barbier, D. and Laugier, A., Appl. Surf. Sci. 36, 545 (1989).Google Scholar
7 Wagner, C.D., Riggs, W.M., Davis, L.E., and Moulder, J.F., in Handbook of X-ray Photoelectron Spectroscopy, edited by Wagner, C.D. (Perkin Elmer, Minnesota, 1979)Google Scholar
8 Hill, J.M., Royce, D.G., Fadley, C.S., Wagner, L.F., and Grunthaner, F.J., Chem. Phys. Lett. 44, 225 (1976).Google Scholar
9 Hill, J.M., Morgan, D.G. W.E. et al. Inorg. Chem. 12 (1973), 953.Google Scholar
10 Kumar, S.N., Chaussemy, G., Canut, B., Charbonnier, M., Laugier, A. and Romand, M., Mater. Sci. and Engg. B3/4 (1989), in press.Google Scholar
11 Lukes, F., Surf. Sc. 30, 91(1972).Google Scholar