Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T09:49:48.568Z Has data issue: false hasContentIssue false

Analysis of Radiative Recombination and Optical Gain in Gallium Nitride-Based Heterostructures

Published online by Cambridge University Press:  10 February 2011

Petr G. Eliseev
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87131–6081
Vladimir A. Smagley
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87131–6081
Marek Osiński
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87131–6081
Get access

Abstract

Threshold current density in GaN-based UV double-heterostructure lasers is predicted in the range of 2- 4 kA/cm2 using theoretical calculation of optimized heterostructure for various types of devices. Freecarrier (FC) and Coulomb-enhancement (CE) models are compared. Results are given for different combinations of effective masses. The minimum threshold current is not strongly influenced by the choice of effective masses. The FC model predicts lower than CE threshold in edge-emitting lasers, whereas the CE model predicts lower than EC threshold in thin VCSEL devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dingle, R, Shaklee, K. L., Leheny, R. F., and Zetterstrom, R. B., Appl. Phys. Lett., 19 (9), 57, 1971.Google Scholar
2. Amano, H., Asahi, T., and Akasaki, L, Jpn. J. Appl. Phys., 29 (2) L205–L206 (1990).Google Scholar
3. Khan, M. A., Olson, D. T., Hove, J. M. Van, and Kuznia, J. N., Appl. Phys. Lett., 58 (14), 15151517 (1991).Google Scholar
4. Amano, H., Watanabe, N., Koide, N., Akasaki, I., Jpn. J. Appl. Phys., 32 (7b), L1000–L1002 (1993).Google Scholar
5. Yung, K., Yee, J., Koo, J., Rubin, M., Newman, N., and Ross, J., Appl. Phys. Lett., 64 (9), 11351137 (1994).Google Scholar
6. Kim, S. T., Amano, H., Akasaki, L, and Koide, N., Appl. Phys. Lett., 64 (12), 15351536 (1994).Google Scholar
7. Khan, M. A., Krishnankutti, S., Skogman, R. A., Kuznia, J. N., and Olson, D. T., Appl. Phys. Lett., 65 (5), 520521 (1994).Google Scholar
8. Yang, X. H., Schmidt, T. J., Shan, W., Song, J. J., and Goldenberg, B., Appl. Phys. Lett., 66 (1), 13 (1995).Google Scholar
9. Zubrilov, A. S., Nikolaev, V. L, Tsvetkov, D. V., Dmitriev, V. A., Irvine, K. G., Edmond, J. A., and Carter, C. H. Jr.,, Appl. Phys. Lett., 67 (4), 533535 (1995).Google Scholar
10. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys., 35 (1B), Pt. 2, L74–L76 (1996).Google Scholar
11. Ahn, D., J. Appl. Phys., 76 (12), 82068208 (1994).Google Scholar
12. Cooper, C., Rees, P., Smowton, P. M., and Blood, P., Techn. Digest, CLEO'95, May 21–26, 1995, Baltimore, 3435 (1995).Google Scholar
13. Honda, T., Katsube, A., Sakaguchi, T., Koyama, F., and Iga, K., Jpn. J. Appl. Phys., 34 (7A), 35273532 (1995).Google Scholar
14. Kamiyama, S., Ohnaka, K., Suzuki, M., and Uenoyama, T., Jpn. J. AppL. Phys., 34 (7a), L821823 (1995).Google Scholar
15. Fang, W. and Chuang, S. L., Appl. Phys. Lett., 67 (6), 751753 (1995).Google Scholar
16. Chow, W. W., Knorr, A., and Koch, S. W., AppL. Phys. Lett., 67 (6), 754756 (1995).Google Scholar
17. Meney, A. T. and O'Reilly, E. P., Appl. Phys. Lett., 67, no 20, 30133015 (1995).Google Scholar
18. Osiniski, M. and Eliseev, P.G., SPIE Symp. “Photonics West'96”, Conf. 2693, San Jose (1996).Google Scholar
19. Rees, P., Cooper, C., Smowton, P. M., Blood, P., and Hegarty, J., IEEE Photon. Techn. Lett., 8 (2), 197199 (1996).Google Scholar
20. Chow, W. W., Wright, A. F., and Nelson, J. S., Appl. Phys. Lett., 68, no 3, 296298 (1996).Google Scholar
21. Lasher, G. and Stern, F., Phys. Rev., A, 133, 553563 (1964).Google Scholar
22. Chuang, S. L., O'Gorman, J., and Levi, A. F. J., IEEEJ. Quant. Electron., 29 (6), 16311639 (1993).Google Scholar
23. Suzuki, M. and Uenoyama, T.. (to be published).Google Scholar
24. Bassani, F., Parravicini, G. P.. Electronic states and optical transitions in solids. Pergamon Press, Oxford, 1975, 191194.Google Scholar
25. Monemar, B.. Phys. Rev., B, 10 (2), 676681 (1974).Google Scholar
26. Ogino, T. and Aoki, M.. Jpn. J. Appl. Phys., 19 (12), 23952405 (1980).Google Scholar
27. Botez, D.. IEEEJ. Quant. Electron., 17, 178185 (1981).Google Scholar