Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T04:54:36.509Z Has data issue: false hasContentIssue false

Analysis of Failure in Metallic Thin-Film Interconnects Due to Stress and Electromigration-Induced Void Propagation

Published online by Cambridge University Press:  10 February 2011

M. Rauf Gungor
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
Leonard J. Gray
Affiliation:
Computer Sci. and Mathematics Div., Oak Ridge National Laboratory, Oak Ridge, TN, 37831
Dimitrios Maroudas*
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
*
a) To whom correspondence should be addressed; E-mail: dimitris@calypso.ucsb.edu
Get access

Abstract

A theoretical analysis is presented of the morphological evolution of transgranular voids in metallic thin films driven by capillarity, stress, and electromigration. This highly nonlinear and complex dynamics is analyzed through self-consistent numerical simulations based on a two-dimensional phenomenological model of a passivated interconnect. The analysis follows a systematic exploration of a six-dimensional parameter space determined by the strengths of the electric and stress fields, surface diffusion anisotropy, and the size of the void. Our simulation results reveal a very rich nonlinear dynamical picture of void morphological evolution mechanism, including faceting, wedge void and faceted slit formation through a facet selection process, and soliton-like surface wave propagation. These results are in very good agreement with experimental observations and have important implications for interconnect failure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ho, P. S. and Kwok, T., Rep. Progr. Phys. 52, 301 (1989);10.1088/0034-4885/52/3/002Google Scholar
Thompson, C. V. and Lloyd, R., Mater. Res. Soc. Bull. 18, No. 12, 19 (1993).10.1557/S088376940003904XGoogle Scholar
2. Sanchez, J. E., McKnelly, L. T., and Morris, J. W. Jr., J. Electron Mater. 19, 1213 (1990);10.1007/BF02673335Google Scholar
J. Appl. Phys. 72, 3201 (1992);10.1063/1.351484Google Scholar
Rose, J. H., Appl. Phys. Lett. 61, 2170 (1992);10.1063/1.108284Google Scholar
Joo, Y.-C. and Thompson, C. V., J. Appl. Phys. 81, 6062, (1997).10.1063/1.364454Google Scholar
3. Kraft, O., Bader, S., Sanchez, J. E. Jr., and Arzt, E., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Materials Research Society, Pittsburgh, PA, 1993), pp. 199204.Google Scholar
4. Arzt, E., Kraft, O., Nix, W. D., and Sanchez, J. E. Jr., J. Appl. Phys. 76, 1563 (1994).10.1063/1.357734Google Scholar
5. Kraft, O. and Arzt, E., Acta Mater. 45, 1599 (1997).10.1016/S1359-6454(96)00231-5Google Scholar
6. Suo, Z., Wang, W., and Yang, M., Appl. Phys. Lett. 64, 1944 (1994);10.1063/1.111750Google Scholar
Yang, W., Wang, W., and Suo, Z., J. Mech. Phys. Solids 42, 897 (1994);10.1016/0022-5096(94)90077-9Google Scholar
Wang, W. Q., Suo, Z., and Hao, T.-H., J. Appl. Phys. 79, 2394 (1996).10.1063/1.361166Google Scholar
7. Kraft, O. and Arzt, E., Appl. Phys. Lett. 66, 2063 (1995).10.1063/1.113903Google Scholar
8. Maroudas, D., Appl. Phys. Lett. 67, 798 (1995).10.1063/1.115471Google Scholar
9. Maroudas, D., Enmark, M. N., Leibig, C. M., and Pantelides, S. T., J. Comp.-Aided Mater. Des. 2, 231 (1995).10.1007/BF01198662Google Scholar
10. Bower, A. F. and Freund, L. B., J. Appl. Phys. 75, 3855 (1993);10.1063/1.354480Google Scholar
Xia, L., Bower, A. F., Suo, Z., and Shih, C. F., J. Mech. Phys. Solids 45, 1473 (1997).10.1016/S0022-5096(97)00013-6Google Scholar
11. Liu, C.-L., Cohen, J. M., Adams, J. B., and Voter, A. F., Surf. Sci. 253, 334 (1991).10.1016/0039-6028(91)90604-QGoogle Scholar
12. Gungor, R. and Maroudas, D., submitted for publication (1998).Google Scholar