Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-26T06:16:34.394Z Has data issue: false hasContentIssue false

The Analysis of Depth-Sensing Indentation Data

Published online by Cambridge University Press:  15 February 2011

Shefford P. Baker*
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraße 92, 7000 Stuttgart 1, Germany
Get access

Abstract

Common methods for analyzing depth-sensing indentation data are briefly reviewed and an overview of the principal factors limiting the accuracy and precision of results obtained using these methods is presented. The largest deviations from the elastic contact models used to interpret depth-sensing indentation data arise from time-dependent displacements and uncertainties in the shape of the indenter tip, the elastic/plastic nature of the contact and the compliance of the testing machine.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tabor, D., The Hardness of Metals (Oxford University Press, London, 1951).Google Scholar
2 Bulychev, S.I. and Alekhin, V.P., Zavod. Lab. 53, 76 (1987).Google Scholar
3 Sneddon, I.N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
4 Pharr, G.M., Oliver, W.C. and Brotzen, F.R., J. Mater. Res. 7, 613 (1992).Google Scholar
5 Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).Google Scholar
6 Nano Instruments Inc., ‘Nanoindenter software,’ Knoxville, TN (1992).Google Scholar
7 Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
8 Baker, S.P., PhD Dissertation, Stanford University, 1993.Google Scholar
9 Field, J.S. and Swain, M.V., J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
10 Laursen, T.A., (private communication, 1992).Google Scholar
11 Baker, S.P., Barbee, T.W. Jr. and Nix, W.D., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E. and Freund, L. B., (Mater. Res. Soc. Proc. 239, Pittsburgh, PA, 1992) p. 319.Google Scholar
12 Nano Instruments Inc., “Nanoindenter,” Knoxville, TN.Google Scholar
13 Weihs, T.P. and Pethica, J.B., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E. and Freund, L. B. (Mater. Res. Soc. Proc. 239, Pittsburgh, PA, 1992) p. 325.Google Scholar
14 Pethica, J.B. and Oliver, W.C., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M. and Smith, D. A., (Mater. Res. Soc. Proc. 130, Pittsburgh, PA, 1989) p. 13.Google Scholar
15 Laursen, T.A. and Simo, J.C., J. Mater. Res. 7, 618 (1992).Google Scholar
16 Baker, S.P., Small, M.K., Vlassak, J.J., Daniels, B.J. and Nix, W.D., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M., Parkin, D. M. and Gleiter, H., (NATO Advanced Study Institute Proceedings, Kluwer Academic Publishers, Dordrecht, 1993).Google Scholar