Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T12:41:38.532Z Has data issue: false hasContentIssue false

Analysis of Cu traces in Si using Transient Ion Drift combined with Rapid Thermal Annealing.

Published online by Cambridge University Press:  01 February 2011

T. Heiser
Affiliation:
Laboratoire de Physique et Applications des Semiconducteurs, CNRS, Strasbourg, France
A. Belayachi
Affiliation:
Laboratoire de Physique et Applications des Semiconducteurs, CNRS, Strasbourg, France
E. Pihan
Affiliation:
Laboratoire de Physique et Applications des Semiconducteurs, CNRS, Strasbourg, France
A. Kempf
Affiliation:
Wacker Siltronic AG, Burghausen, Germany
S. Bourdais
Affiliation:
JIPELEC, MEYLAN, France
P. Bloechl
Affiliation:
Wacker Siltronic AG, Burghausen, Germany
A. Huber
Affiliation:
Wacker Siltronic AG, Burghausen, Germany
B. Semmache
Affiliation:
JIPELEC, MEYLAN, France
Get access

Abstract

Copper trace analysis using Transient Ion Drift (TID) combined with a Rapid Thermal Annealing (RTA) process is investigated. A double pulse method is implemented to allow unambiguous identification of the copper-induced capacitance signal. Use of a mercury probe as sensing Schottky barrier enhances the flexibility of the method and allows mapping of the contaminant. The method is evaluated on quantitatively contaminated silicon wafers and compared to Total X-ray fluorescence (TXRF).

It is shown that in Czochralski grown material, the RTA is sufficient to dissolve most copper atoms into interstitial sites independently of their initial configuration. As a result, both, the surface and bulk contamination can be monitored by RTA/TID with a bulk detection limit close to 1011cm-3.

In Float Zone material mapping of the quenched interstitial copper revealed the existence of defect reactions involving presumably vacancy clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burte, E.P. and Aderhold, W., Sol. Stat. Elec. 41, 1021 (1997)Google Scholar
2. Gonella, R., Motte, P., and Torres, J., Microelec. Reliab. 40, 1305 (2000)Google Scholar
3. Yamada, T., Matsuo, M., Kohno, H., and Mori, Y., Spectrochem. Acta B-Atom. Spec. 56 p2307 (2001)Google Scholar
4. Shabanin, M.B., Yoshimi, T., and Abe, H., J. Electrochem. Soc. 143, 2025 (1996)Google Scholar
5. Kitagawara, Y., Takeno, H., Tobe, S., Hayamizu, Y., Koide, T., and Takenaka, T., Mat. Res. Soc. Symp. Proc. 510, 3 (1998)Google Scholar
6. Hoelz, R., PhD thesis, University of Regensburg, (1999)Google Scholar
7. Kronik, L. and Shapira, Y., Surf. Sci. Rep. 37, 1 (1999)Google Scholar
8. Istratov, A.A., Flink, C., Hieslmair, H., Heiser, T., and Weber, E.R., Appl. Phys. Lett. 71, 2121 (1997)Google Scholar
9. Sachdeva, R., Istratov, A.A., and Weber, E.R., Appl. Phys. Lett. 79, 2937 (2001)Google Scholar
10. Estreicher, S.K., Phys. Rev. B 60, 5375 (1999)Google Scholar
11. Heiser, T., Istratov, A.A., Flink, C., and Weber, E.R., Mat. Sci. Eng. B58, 149 (1999)Google Scholar
12. Hall, R.H. and Racette, J.H., J. Appl. Phys. 35, 379 (1964)Google Scholar
13. Heiser, T. and Weber, E.R., Phys. Rev. B58, 3893 (1998)Google Scholar
14. Flink, C., Feick, H., McHugo, S.A., Seifert, W., Hieslmair, H., Heiser, T., Istratov, A.A., and Weber, E.R. Phys. Rev. Lett. 85, 4900 (2000)Google Scholar
15. Heiser, T., McHugo, S., Hiesmair, H., and Weber, E.R., Appl. Phys. Lett 70, 3576 (1997)Google Scholar
16. Heiser, T., Brochard, C., and Swaanen, M. Mat. Res. Soc. Symp. Proc. 612, D.7.3, (2000)Google Scholar
17.to be publishedGoogle Scholar
18. Weber, E.R., Appl. Phys. A 30, 1, (1983)Google Scholar
19. Reichel, J., Krist. Tech. 13, 721 (1978)Google Scholar
20. Falster, R., Voronkov, V.V., and Quast, F., Phys. Stat. Sol. B222, 219 (2000)Google Scholar