Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T16:30:52.467Z Has data issue: false hasContentIssue false

An Order-Wave Description of the Kinetics of Spinodal Ordering

Published online by Cambridge University Press:  21 February 2011

R. C. Cammarata
Affiliation:
Div. of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
A. L. Greer
Affiliation:
Div. of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
C. J. Lobb
Affiliation:
Div. of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.
Get access

Extract

Several authors have modeled the order-disorder transformation as a continuous process, not occurring by nucleation and growth. Their approaches are based either on treating the transformation as a second-order chemical reaction [1,2], or on discrete formulations of the phenomenological diffusion equations [3–8]. Extending the work of Gorsky [9] and of Bragg and Williams [10], Dienes [2] used the chemical reaction model with absolute reaction rate theory to derive numerically the time-dependence of the longrange order parameter. As his thermodynamic model he used the Bragg-Williams (B-W) approximation, assuming that the solid was uniformly ordered and ignoring inhomogeneity effects such as the excess interface and coherency strain energies that arise if antiphase domains exist.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rothstein, J., Phys. Rev. 94, 1429A (1954).Google Scholar
2. Dienes, G. J., Acta Metall. 3, 549 (1955).Google Scholar
3. Hillert, M., Sc.D. Thesis, Massachusetts Institute of Technology (1956).Google Scholar
4. Hillert, M., Acta Metall. 9, 525 (1961).Google Scholar
5. Khachaturyan, A. G., Soviet Phys. Solid St. 9, 2040 (1968).Google Scholar
6. Khachaturyan, A. G., Prog. Mater. Sci. 22, 1 (1978).Google Scholar
7. Cook, H. E., DeFontaine, D., and Hilliard, J. E., Acta Metall. 17, 765 (1969).Google Scholar
8. Cook, H. E. and DeFontaine, D. in Critical Phenomena in Alloys, Magnets, and Superconductors (eds. Mills, R. E., Ascher, E., and Jaffe, R. I.), p. 257, McGraw-Hill, New York (1970).Google Scholar
9. Gorsky, V., Z. Phys. 50, 64 (1928).Google Scholar
10. Bragg, W. L. and Williams, E. J., Proc. Roy. Soc. London 145A, 699 (1934).Google Scholar
11. Cahn, J. W., Acta Metall. 9, 795 (1961).Google Scholar
12. Landau, L. D. and Lifshitz, E. M., Statistical Physics, Chap. 14, Addison- Wesley, Reading, Mass. (1958).Google Scholar
13. Cammarata, R. C., to be published.Google Scholar
14. Becker, R., Ann. Phys. 32, 1128 (1938).Google Scholar
15. Eshelby, J. D., Proc. Roy. Soc. London A241, 376 (1957).Google Scholar
16. Glasstone, S., Laider, K. J., and Eyring, H., The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
17. Butkov, E., Mathematical Physics, p. 557, Addison-Wesley, Reading, Mass. (1968).Google Scholar
18. Tinkham, M., Introduction to Superconductivity, p. 250, McGraw-Hill, New York (1975).Google Scholar
19. Hilliard, J. E. in Phase Transformations (ed. Aaronson, H.), p. 497, ASM, Metals Park, Ohio (1970).Google Scholar
20. Allen, S. M. and Cahn, J. W., Acta Metall. 27, 1085 (1979).Google Scholar
21. Ardell, A. J., Mardesich, N., and Wagner, C. N. J., Acta Metall. 27, 1261 (1979).Google Scholar
22. Krzanowski, J. E. and Allen, S. N., Acta Metall. 31, 213 (1983).Google Scholar
23. Krivoglaz, M. A. and Smirnov, A. A., The Theory of Order-Disorder in Alloys, p. 56, American Elsevier, New York (1965).Google Scholar