Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T17:52:55.223Z Has data issue: false hasContentIssue false

An Investigation Of The Cause Of Initial Band Bending Of A Cleaved Clean n-GaAs(llO) Surface

Published online by Cambridge University Press:  26 February 2011

K. K. Chin
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
R. Cao
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
K. Miyano
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
C. E. McCants
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
I. Lindau
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
W. E. Spicer
Affiliation:
Stanford Electronics Laboratories, Stanford University, Stanford, CA 94305
Get access

Abstract

The cause of the initial band bending on a clean n-GaAs(llO) surface of so-called “poor quality cleavage” has been controversial. To study this problem, a new type of geometric factor multi-metal evaporator has been designed, which enables us to obtain reproducible metal coverages as low as 10−4 monolayers. By following the early stages of band bending induced by the deposition of noble metals Cu, Ag and Au on n-GaAs (110) surfaces of different cleavage quality, it is found that a certain amount of initial band bending of a clean GaAs(llO) surface of poor quality cleavage corresponds to a certain amount of noble metal coverage (usually lower than 0.01 ML). This phenomenon can be explained in the following way. Any initial band bending on a clean n-GaAs(HO) surface is due to surface defect states created by the cleaving. These cleavage induced defects may be of the same nature as the interface states created by deposited noble metal atoms. Our experimental results will be discussed in the framework of the unified defect model of the Schottky barrier formation on III-V semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eastman, D. E. and Grobman, W. G., Phys. Rev. Lett. 28, 1378 (1972).Google Scholar
2. Wagner, L. F. and Spicer, W. E., Phys. Rev. Lett. 28, 1381 (1972).Google Scholar
3. Van Laar, J. and Scheer, J. J., Surf. Sci. 8, 342 (1967).Google Scholar
4. Huijser, A. and van Laar, J., Surf. Sci. 52, 404 (1975).Google Scholar
5. Spicer, W. E., Lindau, I., Skeath, P., Su, C. Y., and Chye, P., Phys. Rev. Lett. 44, 420 (1980); J. Vac. Sci. Technol. 16 (5), 1422 (1979).Google Scholar
6. Brillson, L. J., J. Vac. Sci. Technol. 20, 652 (1982).Google Scholar
7. Monch, W., Surf. Sci. 132, 92 (1983).Google Scholar
8. Williams, R. H., Surf. Sci. 132, 122 (1983).Google Scholar
9. Ludeke, R., Surf. Sci. 132, 143 (1983).Google Scholar
10. Petro, W. G., Babalola, I. A., Kendelewicz, T., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. A 1 (2), 1181 (1983).Google Scholar
11. Pan, S. H., Kendelewicz, T., Petro, W. G., Williams, M. D., Lindau, I., and Spicer, W. E., Mat. Res. Soc. Symp. Proc. 25, 335 (1984).Google Scholar
12. Ludeke, R., Chiang, T.-C., and Miller, T., J. Vac. Sci. Technol. B1, (3) 581 (1983).Google Scholar
13. Chin, K. K., Pan, S. H., Mo, D., Mahowald, P., Newman, N., Lindau, I., and Spicer, W. E., Phys. Rev. B 32, 918 (1985).Google Scholar
14. Spicer, W. E., Kendelewicz, T., Newman, N., Chin, K. K., and Lindau, I. Surf. Sci, in press.Google Scholar
15. Chin, K. K., McKernan, P., and Lindau, I., submitted to J. Vac. Sci. Technol.Google Scholar
16. Monch, W. and Clemens, H. J., J. Vac. Sci. Technol. 16, 1238 (1979).Google Scholar
17. Joannopoulos, J. D. and Mele, E. J., in Physics of Semiconductors 1978, Inst. Phys. Conf. Ser. 43, Inst, of Physics, London, 1978, p. 1.Google Scholar
18. Daw, M. S. and Smith, D.L., Phys. Rev. B20, 5150 (1979); Solid State Commun. 37, 205 (1981).Google Scholar
19. Allen, R. E. and Dow, J. D., J. Vac. Sci. Technol. 19, 383 (1981); Appl. Surf. Sci. 11/12, 362 (1982); Phys. Rev. B 25, 1423 (1982).Google Scholar
20. Zunger, A., Phys. Rev. B 24, 4372 (1981).Google Scholar
21. Chin, K. K., Kendelewicz, T., McCants, C., Cao, R., Miyano, K., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol., to be published.Google Scholar
22. Newman, N., van Schi Ifgaarde, M., Kendelewicz, T., Williams, M. D., and Spicer, W. E., Phys. Rev. B, to be published.Google Scholar