Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-07T10:00:17.926Z Has data issue: false hasContentIssue false

An In-Situ TEM-Cathodoluminescence Study of Electron Beam Degradation of Luminescence from GaN and In0.1Ga0.9N Quantum Wells

Published online by Cambridge University Press:  11 February 2011

Nicholas M. Boyall
Affiliation:
Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK.
Ken Durose
Affiliation:
Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK.
Ian M. Watson
Affiliation:
Institute of Photonics, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow, G4 ONW, UK.
Get access

Abstract

The effect of electron beam irradiation on the cathodoluminescence (CL) emission from In0.1Ga0.9N/GaN single quantum wells (QW) has been investigated by in-situ measurement of CL in a transmission electron microscope. Analysis of CL quenching over 600s showed that the QW luminescence decayed more quickly than the barrier emission. Both the In0.1Ga0.9N and GaN CL decay curves could be fitted to a simple recombination based model suggesting the decay was due to the introduction of non-radiative centres.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duboz, J.-Y. and Khan, M.A., in Group III Nitride Semiconductor Compounds, edited by Gil, B., (Oxford University Press, Oxford, 1998), 343390.Google Scholar
2. Buyanova, I.A., Wagner, M., Chen, W.M., Monemar, B., Lindstrom, J.L., Amano, H., and Aksaki, I., Phys. Scripta, T79, 7275 (1999).Google Scholar
3. Yacobi, B.G. and Holt, D.B., Cathodoluminescence Microscopy of Inorganic Solids, (Plenum Press, New York, 1990).Google Scholar
4. Pennycook, S.J., Craven, A.J., and Brown, L.M., Inst. Phys. Conf. Ser., 36, 6972 (1977).Google Scholar
5. Petroff, P.M., Logan, R.A., and Savage, A., Phys. Rev. Lett., 44(4), 287291 (1980).Google Scholar
6. Steeds, J.W., Rev. Phys. Appl., 24(6), 6572 (1989).Google Scholar
7. Yamamoto, N., Spence, J.C.H., and Fathy, D., Philos. Mag. B, 49(6), 609629 (1984).Google Scholar
8. Albrecht, M., Grillo, V., Borysiuk, J., Remmele, T., Strunk, H.P., Walther, T., Mader, W., Prystawko, P., Leszczynski, M., Grzegory, I., and Porowski, S., Inst. Phys. Conf. Ser., 169, 267272 (2001).Google Scholar
9. Albrecht, M., Strunk, H.P., Weyher, J.L., Grzegory, I., Porowski, S., and Wosinski, T., J. Appl. Phys., 92(4), 20002005 (2002).Google Scholar
10. Boyall, N.M., Durose, K., and Watson, I.M., Microsc, J.., (in press)Google Scholar
11. Boyall, N.M., Durose, K., and Watson, I.M., (this conference)Google Scholar
12. Pereira, S., Pereira, E., Alves, E., Barradas, N.P., O′Donnell, K.P., Liu, C., Deatcher, C.J., and Watson, I.M., Appl. Phys. Lett., 81(15), 29502952 (2002).Google Scholar
13. Ohno, Y., Kawai, Y., and Takeda, S., Physical Review B, 59(4), 26942699 (1999).Google Scholar
14. Salviati, G., Armani, N., Zanotti-Fregonara, C., Gombia, E., Albrecht, M., Strunk, H.P., Mayer, M., Kamp, M., and Gasparotto, A., MRS Internet J. Nitride Semicond. Res., 5S1, W11.50 (2000).Google Scholar
15. Jenkins, D.W. and Dow, J.D., Physical Review B, 39(5), 33173329 (1989).Google Scholar
16. Forty, A.J., Brit. J. Appl. Phys., 14, 39 (1963).Google Scholar
17. Loginov, Y.Y., Brown, P.D., Thompson, N., and Durose, K., J. Cryst. Growth, 117, 682688 (1992).Google Scholar