Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T15:14:56.344Z Has data issue: false hasContentIssue false

An Extended Kalman Filter Based Method for Fast In-Situ Etch Rate Measurements

Published online by Cambridge University Press:  15 February 2011

T. L. Vincent
Affiliation:
EECS Department, University of Michigan, Ann Arbor, MI 48109– 2122
P. P. Khargonekar
Affiliation:
EECS Department, University of Michigan, Ann Arbor, MI 48109– 2122
F. L. Terry Jr.
Affiliation:
EECS Department, University of Michigan, Ann Arbor, MI 48109– 2122
Get access

Abstract

The goal of this paper is the presentation of a new algorithm for determining etch rate from single or multiple wavelength reflectometry data. This algorithm is based on techniques from recursive nonlinear estimation theory — Extended Kalman Filtering. A major advantage of our algorithm is extremely high speed. Consequently, it can be used in real-time feedback control applications. The speed advantage also makes it a suitable candidate for full wafer high speed etch rate measurement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Anderson, B. D. O. and Moore, J. B., Optimal Filtering, (Prentice-Hall, New Jersey, 1979), p. 195204.Google Scholar
[2] Aspnes, D. E., Theeten, J. B., and Hottier, F., Phys. Rev. B, 20 (8), 3292 (1979).Google Scholar
[3] Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light, (North-Holland Pub. Co., Amsterdam, 1977), p. 283289.Google Scholar
[4] Benson, T. E., Kamlet, L. I., Ruegsegger, S. M., Hanish, C. K., Hanish, P. D., Rashap, B. A., Klimecky, P., Freudenberg, J. S., Grizzle, J. W., Khargonekar, P. P., Terry, F. L., and Barney, B., to appear in J. Vac. Sci. and Technol. B., Jan/Feb, (1996).Google Scholar
[5] Fowles, G. R., Introduction to Modern Optics, (second edition, Dover publishing, New York, 1975), p. 44.Google Scholar
[6] Henck, S. A., J. Vac. Sci. and Technol. A, 11 (4), 934938 (1992).Google Scholar
[7] Killeen, K. P. and Breiland, W. G., J. Elect. Mat., 23 (2), 179183 (1994).Google Scholar
[8] Kalman, R. E., J. Basic Eng., 82D, 3545 (1960).Google Scholar
[9] Marcoux, P. J. and Foo, P. D., Sol. St. Tech., 24, 115122 (1981).Google Scholar
[10] Tarof, L. E., Miner, C. J., and SpringThorpe, A. J., J. Elec. Mat., 18 (3), 361367 (1989).Google Scholar