Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T04:53:31.568Z Has data issue: false hasContentIssue false

An Exploration of the Copper CMP Removal Mechanism

Published online by Cambridge University Press:  10 February 2011

Peter Renteln
Affiliation:
Advanced Products Research and Development Laboratory (APRDL), Motorola, 3501 Ed Bluestein Blvd., Austin, Texas 78721
Ton Ninh
Affiliation:
Advanced Products Research and Development Laboratory (APRDL), Motorola, 3501 Ed Bluestein Blvd., Austin, Texas 78721
Get access

Abstract

Copper CMP is emerging as the next generation process technology enabling feature size reduction to .15μm and beyond[1]. We propose a copper removal mechanism in the context of a slurry consisting of an oxidizer and an abrasive. The body of evidence suggests that we are polishing in an oxidation complex rate limited regime. We observed low removal rate of copper in the absence of either oxidizer or abrasive, but rate was still dependent on CMP parameters and strongly tied to temperature. Any proposed mechanism must explain the observed dependence of rate on CMP aggressiveness and the role of each of the components. For the slurry used in this work we propose that an increase in temperature resulting from an increase in CMP intensity drives the kinetics of the oxidation reaction, and that the removal process can be classified as temperature-activated, abrasion assisted dissolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Farkas, J., Watts, D., Saravia, J., Freeman, M., Das, S., Dang, C., Rabke, S., Bajaj, R., Gomez, J., Holley, J., Garcia, H., Brooks, K.C., Wilger, M., Zavala, J., Cook, L., Capetillo, M., Mendonca, J., Klein, J., Conf. Proc. ULSI XIII, MRS, p. 523 (1998)Google Scholar
2. Steigerwald, J.M., Murarka, S.P., Gutmann, R.J., Duquette, D.J., Mat. Chem. & Phys. 41, p. 217 (1995)10.1016/0254-0584(95)01516-7Google Scholar
3. Carpio, R., Farkas, J., Jairath, R., Thin Solid Films 266, p 238 (1995)10.1016/0040-6090(95)06649-7Google Scholar
4. Luo, Q., Campbell, D.R. and Babu, S.V., CMP-MIC, p. 145 (1996)Google Scholar
5. Sainio, C.A., Duquette, D.J., Steigerwald, J. and Murarka, S.P., J. Elec. Mat., Vol. 25, No. 10, p. 1593 (1996)10.1007/BF02655581Google Scholar
6. Luo, Q., Fury, M.A. and Babu, S.V., CMP-MIC, p. 83 (1997)Google Scholar
7. Sainio, C.A. and Duquette, D.J. in Proceedings of the Symposium On Interconnect and Contact Metallization, edited by H.S., Rathore, G.S., Mathad, C., Plougonven and C.C., Schuckert (ECS Symp. Proc. Vol. 97–31, 1997) p. 129 Google Scholar
8. Luo, Q. and Babu, S.V., VMIC, p. 287 (1997)10.1007/978-3-642-60572-7_20Google Scholar
9. Steigerwald, J.M., Murarka, S.P., Ho, J., Gutmann, R.J. and Duquette, D.J., J. Vac. Sci. Tech. B 13 (6), p. 2215 (Nov/Dec 1995)10.1116/1.588106Google Scholar
10. Steigerwald, J.M., Murarka, S.P., Duquette, D.J. and Gutmann, R.J., Mat. Res. Soc. Symp. Proc. Vol. 337, p. 133 (1994)10.1557/PROC-337-133Google Scholar
11. Chiou, H-W, Chen, L-J and Chen, H-C, CMP-MIC, p 131 (1997)Google Scholar
12. Chiou, H-W, Lin, Z-H, Kuo, L-H, Shih, S.Y., Chen, L-J and Hsia, Chin, 2nd Annual International Interconnect Technology Conference, May 1999, S.F. CA. Google Scholar
13. Lane, R.L. & Mlynar, G., CMP-MIC, p 139 (1997)Google Scholar