Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T17:59:07.215Z Has data issue: false hasContentIssue false

An Explanation for the Environmental Sensitivity of Ni3Al

Published online by Cambridge University Press:  10 February 2011

D. B. Lillig
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana IL 61801.
D. Legzdina
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana IL 61801.
I. M. Robertson
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana IL 61801.
H. K. Birnbaum
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana IL 61801.
Get access

Abstract

Secondary Ion Mass Spectrometry has been used to study the distribution of elements in and near grain boundaries in boron-free and boron-doped Ni76Al24 alloys with and without ∼220 wt. ppm of deuterium. In boron-free alloys, sulfur was distributed about the grain boundaries in both deuterium- free and deuterium-charged samples. The distribution of deuterium followed that of sulfur and was segregated to grain boundaries. In the boron-doped material, sulfur was not found at most grain boundaries in the uncharged material, but was in the charged material. No deuterium was found at the grain boundaries in the boron-doped material. It is proposed that in the boron-free material it is the synergistic effect of sulfur and hydrogen that is responsible for the environmental sensitivity of this alloy. In boron-doped material, boron segregation to the grain boundary prevents sulfur, and to some extent hydrogen, segregating to the grain boundary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bond, G. M., Robertson, I. M., and Birnbaum, H. K., in High Temperature Aluminides and Intermetallics, edited by Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J. O. (The Minerals, Metals and Materials Society Proc., 1990) pp. 301.Google Scholar
2. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall., 33, 213 (1985).CrossRefGoogle Scholar
3. Schulson, E. M., Weihs, T. P., Baker, I., Frost, H. J., and Horton, J. A., Scripta Metall., 19, 1497 (1985).CrossRefGoogle Scholar
4. Wan, X. J., Zhu, J. H., and Jing, K. L., Scr. Metall. Mater., 26, 473 (1992).CrossRefGoogle Scholar
5. George, E. P., Liu, C. T., and Pope, D. P., Scr. Metall. Mater., 27, 365 (1992).CrossRefGoogle Scholar
6. Vitek, V. and Chen, S. P., Scr. Metall. Mater., 25, 1237 (1991).CrossRefGoogle Scholar
7. Chen, S. P., Voter, A. F., Albers, R. C., Boring, A. M., and Hay, P. J., J. Mater. Res., 5, 955 (1990).CrossRefGoogle Scholar
8. Takasugi, T., 0. Izumi, and Masahashi, N., Acta Metall., 33, 1259 (1985).CrossRefGoogle Scholar
9. Muller, D. A., Subramanian, S., Batson, P. E., Silcox, J., and Sass, S. L., Acta Mater., 44, 1637 (1996).CrossRefGoogle Scholar
10. Lee, T. C., Robertson, I. M., and Birnbaum, H. K., Acta.Metall. Mater., 40, 2569 (1992).CrossRefGoogle Scholar
11. Bond, G. M., Robertson, I. M., and Birnbaum, H. K., J. Mater. Res., 2, 436 (1987).CrossRefGoogle Scholar
12. Swiatnicki, W. A. and Grabski, M. W., Acta Metall., 37, 1307 (1989).CrossRefGoogle Scholar
13. Lee, K. H., Lukowski, J. T., and White, C. L., Intermetallics 5, 483 (1997).CrossRefGoogle Scholar
14. George, E. P., Liu, C. T., and Pope, D. P., Acta Mater., 44, 1757 (1996).CrossRefGoogle Scholar
15. Cohron, J. W., George, E. P., Heatherly, L., Liu, C. T., and Zee, R. H., Acta Mater., 45, 2801 (1997).CrossRefGoogle Scholar
16. Painter, G. S., Scr. Mater., 37, 1023 (1997).CrossRefGoogle Scholar
17. Yang, L. and McLellan, R. B., Scr. Metall. Mater., 32, 779 (1995).CrossRefGoogle Scholar
18. Wan, X. J., Zhu, J. H., Jing, K. L., and Liu, C. T., Scr. Metall. Mater., 31, 677 (1994).CrossRefGoogle Scholar
19. Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scr. Metall., 19, 551 (1985).CrossRefGoogle Scholar
20. White, C. L., Padgett, R. A., Liu, C. T., and Yalisove, S. M. Scr. Metall., 18, 1417 (1984).CrossRefGoogle Scholar
21. Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Met. Trans. A, 441 (1985).Google Scholar
22. Chiba, A., Hanada, S., and Watanabe, S., in High-Temperature Ordered Intermetallic Alloys VI, edited by Horton, J. A., Baker, I., Hanada, S., Noebe, R. D., and Schwartz, D. S. (Materials Research Society Proc. 364, Boston, MA, 1995) pp. 843.CrossRefGoogle Scholar
23. Taub, A. I., Briant, C. L., Huang, S. C., Chang, K. M., and Jackson, M. R., Scr. Metall., 20, 129 (1986).CrossRefGoogle Scholar
24. White, C. L. and Stein, D. F., Metallurgical Transactions A 9A, 1322 (1978).CrossRefGoogle Scholar
25. White, C. L. and Choudhury, A., in High-Temperature Ordered Intermetallic Alloys II, edited by Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O. (Materials Research Society Proc. 81, Boston, MA, 1987) pp. 427.Google Scholar
26. Itoh, G., Chikaizumi, R., and Kanno, M., in Deformation and Fracture of Ordered Intermetallic Materials III., edited by Soboyejo, W. O., Srivatsan, T. S., and Fraser, H. L. (TMS - Miner. Metals & Mater. Soc. Proc., Cincinnati, OH, 1996) pp. 275.Google Scholar
27. Kuruvilla, A. K. and Stoloff, N. S., Scr. Metall., 19, 83- (1985).CrossRefGoogle Scholar
28. Lee, K. H. and White, C. L., Scr. Metall. Mater., 33, 129 (1995).CrossRefGoogle Scholar
29. Lassila, D. H. and Birnbaum, H. K., Acta Metall., 35, 1815 (1987).CrossRefGoogle Scholar
30. Robertson, I. M. and Birnbaum, H. K., Acta Metall., 34, 353 (1986).CrossRefGoogle Scholar