Skip to main content Accessibility help
×
Home

An Alternative Approach to Analyzing the Interstitial Decay from the End of Range Damage During Millisecond Annealing

  • Renata Camillo-Castillo (a1), Mark E Law (a2) and Kevin S Jones (a3)

Abstract

Flash-assist Rapid Thermal Processing (RTP) presents an opportunity to investigate annealing time and temperature regimes which were previously not accessible with conventional annealing techniques such as Rapid Thermal Annealing. This provides a unique opportunity to explore the early stages of the End of Range (EOR) damage evolution and also to examine how the damage evolves during the high temperature portion of the temperature profile. However, the nature of the Flash-assist RTP makes it is extremely difficult to reasonably compare it to alternative annealing techniques, largely because the annealing time at a given temperature is dictated by the FWHM of the radiation pulse. The FWHM for current flash tools vary between 0.85 and 1.38 milliseconds, which is three orders of magnitude smaller to that required for a RTA to achieve similar temperatures. Traditionally, the kinetics of the extended defects has been studied by time dependent studies utilizing isothermal anneals; in which specific defect structures could be isolated. The characteristics of Flash-assist RTP do not allow for such investigations in which the EOR defect evolution could be closely tracked with time. Since the annealing time at the target temperature for the Flash-assist RTP is essentially fixed to very small times on the order of milliseconds, isochronal anneals are a logical experimental approach to temperature dependent studies. This fact presents a challenge in the data analysis and comparison. Another feature of Flash-assist RTP which makes the analysis complex is the ramp time relative to the dwell time spent at the peak fRTP temperature. As the flash anneal temperature is increased the total ramp time can exceed the dwell time at the peak temperature, which may play a significantly larger role in dictating the final material properties. The inherent characteristics of Flash-assist RTP have consequently required the development of another approach to analyzing the attainable experimental data, such that a meaningful comparison could be made to past studies. The adopted analysis entails the selection of a reference anneal, from which the decay in the trapped interstitial density can be tracked with the flash anneal temperature, allowing for the kinetics of the interstitial decay to be extracted.

Copyright

References

Hide All
1.International Technology Roadmap for Semiconductors. Available: http://ublic.itrs.net/
2. Camm, D. M., Lojek, B., Proc. 2nd Int. Conf. Advanced Thermal Processing of Semiconductors (RTP 1994), p.259.
3. Stuart, G.C., Camm, D.M., Cibere, J., Kaludjercic, L., Kervin, S.L., Lu, B., McDonnell, K.J., Tam, N.. 10th IEEE International Conferenceof Advanced Thermal Processing of Semiconductors, pg. 77 (2002).
4. Bonafos, C., Omri, M., Mauduit, B. de, BenAssayag, G., Claverie, A., Alquier, D. Martinez, A., Mathiot, D., J. Appl. Phys. 82, 2855 (1997)
5. Bharatan, S., Desrouches, J., and Jones, K. S., Materials and Process Characterization of Ion Implantation, Vol. 4, p. 222. (Ion Beam, 1997).
6. Jones, K.S., Prussin, S., and Weber, E. R., Appl. Phys. A 45, 1 (1988).
7. Benton, J.L., Libertino, S., Kringhoj, P., Eaglesham, D. J. and Poate, J. M., J. Appl. Phys. 82 (1), 120 (1997).
8. Coffa, S., Libertino, S., Spinella, C., Appl. Phys. Lett, 76(3), 321 (2000).
9. Libertino, S., Benton, J. L., Coffa, S., and Eaglesham, D. J., Mater. Res. Soc. Symp. Proc. 504, 3, (1998).
10. Eaglesham, D.J., Stolk, P. A., Gossmann, H.-J., and Poate, J. M., Appl. Phys. Lett. 65 (18) (1994).
11. Stolk, P.A., Gossmann, H.-J., Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraŕz, M., Poate, J. M., Luftman, H. S., Haynes, T. E., J. Appl. Phys. 81 (9), (1997).
12. Pan, G.Z., Tu, K.N., Prussin, A., J. Appl. Phys. 71(5), 659, (1997).
13. Li, J. and Jones, K.S., Appl. Phys. Lett. 73 (25), (1998).
14. Keys, P.. PhD. Dissertation, Department of Materials Science and Engineering. University of Florida, Gainesville, FL (2001).
15. Kim, J., Wilkins, J. W., Khan, F. S., and Canning, A., Phys. Rev. B 40, 10351 (1989).
16. Gilmer, G. H., Rubia, T. Diaz de la, Stock, D. M. and Jaraiz, M., Nucl. Instr. Meth. Phys. Res. B 102, 247 (1995).
17. Cowern, N.E.B., Mannino, G., Stolk, P. A., Roozeboom, F., Huizing, H. G. A., Berkum, J. G. M. van, Cristiano, F., Claverie, A., Jaraŕz, M., Phys. Rev. Letts. 82 (22), 4460 (1999).
18. Chichkine, M. P., Souza, M. M. De, and Narayanan, E. M. Sankara, Phys. Rev. Lett. 88, 085501 (2002).
19. Souza, M.M. De, Chichkine, M.P., Narayanan, E.M. Sankara, Mater. Res. Soc. Proc. N0. 610, B11.3.1, (2000).
20. Claverie, A., Colombeau, B., Cristiano, F., Altibelli, A., Bonafos, C., Mater. Res. Soc. Proc., 669, J9.4 (2001).
21. Claverie, A., Colombeau, B., Cristiano, F., Altibelli, A., Bonafos, C., Nucl. Instr. Meth. Phys. Res. B 186 (1-4), 281 (2002).
22. Robertson, L.S., Jones, K.S., Rubin, L.M., Jackson, J., J. Appl. Phys. 87(6), 2910 (2000).
23. Gutierrez, A.F., M.S. Thesis, Department of Materials Science and Engineering, University of Florida: Gainesville (2001)
24. King, A.C.. M.S. Thesis, Department of Materials Science and Engineering, University of Florida, Gainesville FL (2003).
25. King, A.C., Gutierrez, A. F., Saavedra, A. F., Jones, K. S. and Downey, D. F., J. Appl. Phys. 93(5), 2449 (2003).
26. Seidel, T.E., Lischerner, D.J., Pai, C.S., Knoell, R.V., Maher, D.M., Jacobson, D.C., Nucl. Instr. Meth. Phys. B 7/8, 251, (1985).
27. Avci, I.. Ph.D. Dissertation, Department of Electrical and Computer Engineering. University of Florida. (2002)
28. Law, M. E., Haddara, Y. M., and Jones, K. S., J. Appl. Phys. 84, 3555 (1998).
29.FLOOPS, Mark Law, University of Florida, Electrical and Computer Engineering Department (2003).
30. Ural, A., Griffin, P. B., Plummer, J. D.. Appl. Phys. Lett., 79(26), 24, (2001).
31. Bracht, H., Haller, E.E., Clark-Phelps, R., Phys. Rev. Lett. 81(2), 393, (1998).

Keywords

Related content

Powered by UNSILO

An Alternative Approach to Analyzing the Interstitial Decay from the End of Range Damage During Millisecond Annealing

  • Renata Camillo-Castillo (a1), Mark E Law (a2) and Kevin S Jones (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.