Skip to main content Accessibility help

Amorphous silicon Bragg reflectors fabricated by oblique angle deposition

  • S. J. Jang (a1), C. I. Yeo (a1) and Y. T. Lee (a1) (a2) (a3)


We demonstrate the highly reflective broadband a-Si distributed Bragg reflector fabricated by oblique angle deposition. By tuning the refractive index of a-Si film, the high index contrast material system was achieved. The broadband reflective characteristics of a-Si distributed Bragg reflector were investigated by calculation and fabrication. The broad stop band (Δλ/λ=33.7%, R>99%) with only a five-pair a-Si distributed Bragg reflector was achieved experimentally at center wavelength of 650, 980, and 1550 nm. The size-, feature- and substrate-independent method for highly reflective Bragg reflectors was realized by simple oblique angle evaporation.


Corresponding author


Hide All
1. Boucart, J., Strack, C., Gaborit, F., Plais, A., Bouche, N., Derouin, E., Remy, J. C., Bonnet-Gamard, J., Goldstein, L., Fortin, C., Carpentier, D., Salet, P., Brillouet, F., and Jacquet, J., “Metamorphic DBR and tunnel-junction injection: A CW RT monolithic long-wavelength VCSEL,” IEEE J. Select. Top. Quant. Electron. 5, 520529 (1999).
2. Ripin, D. J., Gopinath, J. T., Shen, H. M., Erchak, A. A., Petrich, G. S., Kolodziejski, L. A., Kartner, F. X., and Ippen, E. P., “Oxidized GaAs/AlAs mirror with a quantum-well saturable absorber for ultrashort-pulse Cr4+:YAG laser,” Opt. Commun. 214, 285289 (2002).
3. Schubert, E. F., Hunt, N. E. J., Vredenberg, A. M., Harris, T. D., Poate, J. M., Jacobson, D. C., Wong, Y. H., and Zydzik, G. J., “Enhanced photoluminescence by resonant absorption in Er-doped SiO2/Si microcavities,” Appl. Phys. Lett. 63, 26032605 (1993).
4. Lin, Y. H., Wu, C. L., Pai, Y. H., and Lin, G. R., “A 533-nm self-luminescent Si-rich SiNx/SiOx distributed Bragg reflector,” Opt. Express 19, 65636570 (2011).
5. Jang, S. J., Song, Y. M., Choi, H. J., Yu, J. S., and Lee, Y. T., “Structural and optical properties of silicon by tilted angle evaporation,” Surf. Coat. Tech. 205, S447S450 (2010).
6. Schubert, M. F., Xi, J.-Q., Kim, J. K., and Schubert, E. F., “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007).
7. Xi, J.-Q., Schubert, M. F., Kim, J. K., Schubert, E. F., Chen, M., Lin, S. Y., Liu, W., and Smart, J. A., “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176179 (2007).
8. Fan, J., Tang, X., Zhao, Y., “Water contact angles of vertically aligned Si nanorod arrays,” Nanotechnology 15, 501504 (2004).
9. Song, Y. M., Choi, H. J., Yu, J. S., and Lee, Y. T., “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18, 1306313071 (2010).
10. Mateus, C. F. R., Huang, M. C. Y., Chen, L., Chang-Hasnain, C. J., and Suzuki, Y., “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 16761678 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed