Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T09:21:46.101Z Has data issue: false hasContentIssue false

Amorphous Silicon Alloy Materials and Solar Cells Near the Threshold of Microcrystallinity

Published online by Cambridge University Press:  15 February 2011

J. Yang
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084
S. Guha
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, MI 48084
Get access

Abstract

One of the most effective techniques used to obtain high quality amorphous silicon alloys is the use of hydrogen dilution during film growth. The resultant material exhibits a more ordered microstructure and gives rise to high efficiency solar cells. As the hydrogen dilution increases, however, a threshold is reached, beyond which microcrystallites begin to form rapidly. In this paper, we review some of the interesting features associated with the thin film materials obtained from various hydrogen dilutions. They include the observation of linear-like objects in the TEM micrograph, a shift of the principal Si TO band in the Raman spectrum, a sharp, low temperature peak in the H2 evolution spectrum, a shift of the wagging mode in the IR spectrum, and a narrowing of the Si (111) peak in the X-ray diffraction pattern. These spectroscopic tools have allowed us to optimize deposition conditions to near the threshold of microcrystallinity and obtain desired high quality materials. Incorporation of the improved materials into device configuration has significantly enhanced the solar cell performance. Using a spectral-splitting, triple-junction configuration, the spectral response of a typical high efficiency device spans from below 350 nm to beyond 950 nm with a peak quantum efficiency exceeding 90%; the triple stack generates a photocurrent of 27 mA/cm2. This paper describes the effect of the improved materials on various solar cell structures, including a 13% active-area, stable triple-junction device.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rannels, J., Proc. of 2nd World Conf. and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria (1998), p. LXXXVII.Google Scholar
2. Guha, S., Yang, J., Banerjee, A., Glatfelter, T., Vendura, G.J. Jr, Garcia, A., and Kruer, M., Proc. of 2nd World Conf. and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria (1998) p. 3609.Google Scholar
3. Roedern, B. von, Zweibel, K., Schiff, E., Cohen, J.D., Wagner, S., Hegedus, S.S., and Peterson, T., AIP Conference Proceedings 394, 3 (1997).Google Scholar
4. Yang, J., Xu, X., and Guha, S., Mater. Res. Soc. Symp. Proc. 336, 687 (1994). 249 Google Scholar
5. Guha, S., Narasimhan, K.L., and Pietruszko, S.M., J. Appl. Phys. 52, 859 (1981).Google Scholar
6. Tsu, D.V., Chao, B.S., Ovshinsky, S.R., Guha, S., and Yang, J., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
7. Xu, X., Yang, J., and Guha, S., J. Non-Crys. Solids 198–200, 96 (1996).Google Scholar
8. Jones, S.J., Chen, Y., Williamson, D.L., Xu, X., Yang, J., and Guha, S., Mater. Res. Soc. Symp. Proc. 297, 815 (1993).Google Scholar
9. Williamson, D.L., Mater. Res. Soc. Symp. Proc. 377, 251 (1995).Google Scholar
10. Sugiyama, S., Yang, J., and Guha, S., Appl. Phys. Lett. 70, 378 (1997).Google Scholar
11. Guha, S., Yang, J., Williamson, D.L., Lubianiker, Y., Cohen, J.D., and Mahan, A.H., Appl. Phys. Lett. (1999) (to be published).Google Scholar
12. Williamson, D.L., this symposium.Google Scholar
13. Mahan, A.H., Yang, J., and Guha, S., this symposium.Google Scholar
14. Kamei, T., Stradius, P., and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).Google Scholar
15. Koh, J.H., Lee, Y., Fujiwara, H., Wronski, C.R., and Collins, R.W., Appl. Phys. Lett. 73, 1526 (1998).Google Scholar
16. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
17. Yang, J., Banerjee, A., Glatfelter, T., Hoffman, K., Xu, X., and Guha, S., 1st World Conf. on Photovoltaic Energy Conversion, Waikoloa, Hawaii, Dec. 5-9, 1994, p. 380.Google Scholar
18. Yang, L. and Chen, L., Mater. Res. Soc. Symp. Proc. 336, 669 (1994).Google Scholar
19. Jiang, L., Wang, Q., Schiff, E.A., Guha, S., Yang, J., and Deng, X., Appl. Phys. Lett. 69, 3063 (1996).Google Scholar
20. Shima, M., Terakawa, A., Isomura, M., Tanaka, M., Kiyama, S., and Tsuda, S., Appl. Phys. Lett. 71, 84 (1997).Google Scholar
21. Guha, S., Yang, J., Pawlikiewicz, A., Glatfelter, T., Ross, R., and Ovshinsky, S.R., Appl. Phys. Lett. 54, 2330 (1989).Google Scholar
22. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70, 2975 (1997).Google Scholar
23. Yang, J., Sugiyama, S., and Guha, S., Mater. Res. Soc. Symp. Proc. 507, 157 (1998).Google Scholar