Skip to main content Accessibility help

Amorphous Mixed TiO2 and SiO2 Films on Si(100) by Chemical Vapor Deposition

  • Ryan C. Smith (a1), Charles J. Taylor (a1), Jeffrey Roberts (a1), Noel Hoilien (a2), Stephen A. Campbell (a2) and Wayne L. Gladfelter (a1)...


Amorphous thin films of composition TixSi1-xO2 have been grown by low pressure chemical vapor deposition on silicon (100) substrates using Si(O-Et)4 and either Ti(O-iPr)4 or anhydrous Ti(NO3)4 as the sources of SiO2 and TiO2, respectively. The substrate temperature was varied between 300 and 535°C, and the precursor flow rates ranged from 5 to 100 sccm. Under these conditions growth rates ranging from 0.6 to 90.0 nm/min were observed. As-deposited films were amorphous to X-rays and SEM micrographs showed smooth, featureless film surfaces. Cross-sectional TEM showed no compositional inhomogeneity. RBS revealed that x (from the formula TixSi1-xO2) was dependent upon the choice of TiO2 precursor. For films grown using TTIP-TEOS x could be varied by systematic variation of the deposition conditions. For the case of TN-TEOS x remained close to 0.5 under all conditions studied. One explanation is the existence of a specific chemical reaction between TN and TEOS prior to film deposition. TEOS was mixed with a CCl4 solution of TN at room temperature to produce an amorphous white powder (Ti/Si = 1.09) and 1HNMR of the CCl4 solution indicated resonances attributable to ethyl nitrate.



Hide All
[1] Campbell, S. A., Gilmer, D. C., Wang, X.-C., Hsieh, M.-T., Kim, H.-S., Gladfelter, W. L., and Yan, J., IEEE Trans. Electron Devices, vol. 44, pp. 104109, 1997.
[2] Gilmer, D. C., Colombo, D. G., Taylor, C. J., Roberts, J., Haugstad, G., Campbell, S. A., Kim, H.-S., Wilk, G. D., Gribelyuk, M. A., and Gladfelter, W. L., Chem. Vap. Deposition, vol. 4, pp. 911, 1998.
[3] Taylor, C. J., Gilmer, D. C., Colombo, D. G., Wilk, G. D., Campbell, S. A., Roberts, J., and Gladfelter, W. L., J. Am. Chem. Soc., vol. 121, pp. 52205229, 1999.
[4] Melponder, S. M., West, A. W., Barnes, C. L., and Blanton, T. N., J. Mater. Sci., vol. 26, pp. 35853592, 1991.
[5] Syms, R. R. A. and Holmes, A. S., J. Non-Cryst. Sol., vol. 170, pp. 223233, 1994.
[6] Schultz, P. C., J. Am. Ceram. Soc., vol. 59, pp. 214219, 1976.
[7] Mukhopadhyay, S. M. and Garofalini, S. H., J. Non-Cryst. Sol., vol. 126, pp. 202208, 1990.
[8] Kamada, T., Kitagawa, M., Shibuya, M., and Hirao, T., Jpn. J. Appl. Phys., vol. 30, pp. 35943596, 1991.
[9] Martinet, C., Paillard, V., Gagnaire, A., and Joseph, J., J. Non-Crystalline Solids, vol. 216, pp. 7782, 1997.
[10] Inoue, M., U. S. Patent 3 614 548, 1971.
[11] Adams, A. C. and Capio, C. D., J. Electrochem. Soc., vol. 126, pp. 10421046, 1979.
[12] Rojas, S., Modelli, A., Wu, W. S., Borghesi, A., and Pivac, B., J. Vac. Sci. Technol. B, vol. 8, pp. 11771184, 1990.
[13] Okuhara, T. and White, J. M., Appl. Surf. Sci., vol. 29, pp. 223241, 1987.
[14] Rausch, N. and Burte, E. P., J. Electrochem. Soc., vol. 140, pp. 145149, 1993.
[15] Hubbard, K. J. and Schlom, D. G., J. Mater. Res., vol. 11, pp. 27572776, 1996.
[16] Mallard, W. G. and Linstrom, P. J., “NIST Chemistry Webbook, NIST Standard Reference Database Number 69,”. Gaithersburg, MD 20899: National Institute of Standards and Technology, February 2000, (
[17] DeVries, R. C., Roy, R., and Osborn, E. F., Transactions of the British Ceramic Society, pp. 525540, 1954.
[18] Evans, D. L., J. Am. Ceram. Soc., vol. 53, pp. 418419, 1970.
[19] Addison, C. C. and Logan, N., Adv. Inorg. Chem. and Radiochem., vol. 6, pp. 71142, 1964.
[20] Addison, C. C. and Simpson, W. B., J. Chem. Soc., pp. 598602, 1965.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed